Main Article Content

Authors

The energy transition requires efforts oriented in multiple directions to achieve the sustainable exploitation of the largest amount of renewable energy sources available. Of particular interest for countries located in warm regions and with favorable soil conditions is the use of residual biomass from agricultural and forestry crops. This renewable source of energy has the disadvantage of its low apparent density when it leaves post-harvest processing systems, being necessary its densification to achieve an energy density attractive in economic terms. This article presents the mechanical and thermal modeling of a compaction chamber of a briquetting machine oriented to the design of an experimental prototype. The internal and external diameters of the compaction chamber are considered as independent variables and, as a response, the heating time to achieve a temperature in the biomass, to achieve the activation of the lignin. The preceding, keeping constant the electrical power installed in the compaction chamber, stroke length, compaction pressure, materials choice, among other geometric factors. Finally, a search is made for the minimum use of material for the compaction chamber subject to a condition of mechanical strength and a fixed electrical heating power. As a result of the study, the best geometry of the compaction chamber is obtained to achieve the minimum use of material, ensuring the shortest heating time, and meeting the goal of permissible design stress. This work can be useful as a guide for the optimal design activity of compaction chamber in biomass densification equipment.

Huber Cabrales Contreras, Universidad Francisco de Paula Santander. Cúcuta, Colombia

https://orcid.org/0009-0005-6320-8663

Nelson Arzola de la peña, Universidad Nacional de Colombia. Bogotá, Colombia.

https://orcid.org/0000-0002-5004-113X

1.
Cabrales Contreras H, Arzola de la peña N. Mechanical-thermal modeling oriented to the design of a compaction chamber for densification of residual biomass. inycomp [Internet]. 2023 May 5 [cited 2024 Nov. 22];25(2):e-20311808. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11808

H. P. García, Modelación de la gasificación de biomasa en un reactor de lecho, Bogotá: Tesis de maestria. Universidad Nacional de Colombia, 2011.

H. Cabrales, Caracterización del proceso de densificación de biomasa residual proveniente de Palma de Aceite Africana (Tusa), Bogotá: Universidad Nacional de Colombia, 2012.

Fedepalma, «Sispa,» Fedepalma, [En línea]. Available: www.sispaweb.fedepalma.org/SitePages/Censo.aspx. . [Último acceso: 28 julio 2021].

A. A. y. J. A. G. N. N. E. Ramírez Contreras, «Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia,» Revista Palmas, vol. 36, nº 4, pp. 41-54, 2015.

N. A. O. A. Huber Cabrales, «The effects of moisture content, fiber length and compaction time on African oil palm empty fruit bunches briquette quality parameters,» Heliyon, vol. 6, nº 12, 2020.

G. L. J. M. J. M. J. P. y. L. O. E. Granada, «Feasibility study of forest residue use as fuel through co-firing with pellet,» Biomass and Bioenergy, vol. 30, nº 3, pp. 238-246, 2006.

L. C. y. C. Saffron, «Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost,» Energy, vol. 80, pp. 387-395, 2016.

A. O. O. ,. A. K. B. G. L. K. y. S. S. H. Shahrukh, «Net energy ratio for the production of steam pretreated biomass-based pellets,» Biomass and Bioenergy, vol. 80, pp. 286-297, 2015.

T. W. C. Sakkampang, «Study of ratio energy consumption and gained energy during briquetting process for glycerin-biomass briquette fuel,» Fuel, vol. 115, pp. 186-189, 2014.

D. H. Z. J. A. S. J.G. Ardila Marin, «Independecia de malla en tubos torsionados para intercambio de calor: caso de estudio,» Facultad de Ciencias Universidad Nacional de Colombia, vol. 5, nº 1, pp. 124 - 140, 2016.

I. ANSYS, «ANSYS,» [En línea]. Available: http://www.ansys.com/Products/Workflow+Technology/ANSYS+Workbench+Platform/ANSYS+Meshing. [Último acceso: 4 9 2021].

G. L. J. M. J. M. J. P. y. L. O. E. Granada, «Feasibility study,» Biomass and Bioenergy, vol. 30, nº 3, pp. 238-246, 2006.

ICONTEC, Instituto Colombiano de Normas Técnicas, «Briquetas para uso doméstico,» ICONTEC, Bogota, 1987.

K. H. M. A. M. K. Z. T. J. Džugan, «Thermo-physical properties investigation in relation to deposition orientation for SLM deposited H13 steel,» Thermochimica Acta, vol. 683, 2020.

Standard Specification for Tool Steels Alloy, «ASTM A681-08,» ASTM International, 2015.

Received 2021-12-07
Accepted 2023-05-03
Published 2023-05-05