Main Article Content

Authors

Micro-generation of electricity is an alternative used in areas that are difficult to access and are not connected to the national electricity system. To resolve this limitation, different technologies are used to take advantage of renewable energies, among which the Pelton type turbines stand out, which are distinguished by requiring large waterfalls and small flow rates. For the development and implementation of this electricity generation technology, there are some sizing methodologies, among which the following stand out: the use of parametric curves for the design of the bucket, computational fluid dynamics for the general design of the turbine and the bucket, and other more traditional methodologies that use graphical methods for the design of the bucket; all of these with some deficiencies that do not allow optimal performance under a specific operating condition. This work compares three traditional methodologies for the design of the bucket of Pelton type turbines (OLADE, Nechleba and Thake), this to select the most suitable for a specific condition. Therefore, an analysis of the dynamic behavior is made by means of a modal analysis, and of the structural static behavior in the finite element software ANSYS. From the results obtained, all the buckets meet two of the three pre-established selection criteria; Thake's methodology stands out as having the best results in the resistance-weight relationship.

1.
Ceballos Zuluaga JM, Isaza Merino CA, Patiño Arcila ID, Morales Rojas AD. Comparative analysis of buckets sizing methodologies for Pelton turbines in micro-generation systems. inycomp [Internet]. 2023 Jan. 15 [cited 2024 Dec. 21];25(1):e-21411797. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11797

El-Khattam W, Salama MMA. Distributed generation technologies, definitions and benefits. Electr Power Syst Res. 2004;71(2):119–28.

Fernández de Alarcón Medina J. Estudio de los sistemas de microgeneración en españa [Internet]. Universidad Carlos III de Madrid; 2010. Available from: http://hdl.handle.net/10016/10860

Ackermann T, Andersson G, Söder L. Distributed generation: A definition. Electr Power Syst Res. 2001;57(3):195–204.

Sarmiento Rojas JA. Metodología de diseño para turbinas tipo Pelton, mediante un estudio paramétrico [Internet] [Trabajo de maestria]. [Quito]: Escuela Politécnica Nacional; 2020. Available from: http://bibdigital.epn.edu.ec/handle/15000/20949

Tuvshintugs B. 5kW and 100kW Pelton Turbine Design and Performance Analysis for Air Injected Operation [Internet] [Master Thesis]. Korea Maritime and Ocean University; 2018. Available from: http://repository.kmou.ac.kr/handle/2014.oak/11659

Niño Caballero JC. Desarrollo de una herramienta de dimensionamiento paramétrico de turbinas Pelton enfocada a PCH’s [Trabajo de Fin de Grado]. Universidad Autónoma de Bucaramanga; 2019.

Solemslie BW. Experimental methods and design of a Pelton bucket [PhD Thesis]. Norwegian University of Science and Technology; 2016.

Zidonis A, Panagiotopoulos A, Aggidis GA, Anagnostopoulos JS, Papantonis DE. Parametric optimisation of two Pelton turbine runner designs using CFD. J Hydrodyn [Internet]. 2015;27(3):403–12. Available from: http://dx.doi.org/10.1016/S1001-6058(15)60498-X

Zhang Z. Pelton turbines [Internet]. 1st ed. Springer Publishing International, editor. Zurich; 2016. 311 p. Available from: https://www.springer.com/gp/book/9783319319087

Nasir BA. Design considerations of micro-hydro-electric power plant. In: Energy Procedia. 2014. p. 19–29.

Hernandez C, Indacochea E. Apuntes para un diseño,estandarizacion y fabricación de equipos para pequeñas centrales hidroelectricas. Volumen II. Turbinas Pelton [Internet]. 1st ed. OLADE OL de energía, editor. Lima; 1988. 96 p. Available from: http://biblioteca.olade.org/opac-tmpl/Documentos/old0387.pdf

Nechleba M. Hydraulic turbines. 1957. 633 p.

Thake J. Micro-hydro Pelton Turbine Manual. 2000. 196 p.

Nigussie T. CFD Based Design Optimization, Fabrication and Testing of A Micro Hydro Pelton Turbine [Internet] [PhD dissertation]. Addis Ababa University; 2018. Available from: http://etd.aau.edu.et/handle/123456789/23756

Coz F, Sanchez T, Viani B, Segura J, Quiroz L, Gaitán J, et al. Manual de mini y microcentrales hidráulicas. ITDG, editor. Lima; 1995. 191 p.

ANSYS INC. Lecture 7: Course of Introduction to ANSYS Meshing. In Course os Introduction to ANSYS Meshing. 2015.

ANSYS INC. Appendix A: Mesh Quality. In Training Manual: ANSYS Meshing Application Introduction. 2009.

Salas Araya MG, Ureña Naranjo BM, Villalba Chacón MA. Diseño y construcción de una pico turbina hidroeléctrica tipo Pelton, para potencias de hasta 1000 watts [Internet] [Trabajo de Fin de grado]. Universidad de Costa Rica; 2017. Available from: http://www.inii2.ucr.ac.cr/RIINII/pdf/IM/IM-7970.pdf

Solano León FA, Bolivar Bernal CA. Diseño de una pico central hidroeléctrica para la generación de energía en el bloque A de la Universidad Libre sede Bosque Popular [Internet] [Trabajo de Fin de grado]. Universidad Libre; 2015. Available from: https://repository.unilibre.edu.co/bitstream/handle/10901/8450/DOCUMENTO FINAL PCH.pdf?sequence=1&isAllowed=y

Montagut ME. Study of the dynamic behavior of Pelton turbines [Doctoral Thesis]. Universitat Politècnica de Catalunya; 2019.

Mack R, Probst C. Evaluation of the dynamic behavior of a Pelton runner based on strain gauge measurements. IOP Conf Ser Earth Environ Sci. 2016;49(2).

Agudelo S, Chica E, Obando F, Sierra N, Velasquez L. Diseño, simulación, fabricación y caracterización de una turbina tipo Pelton de 5 kW. Ing y Compet. 2013;193(1):183–93.

Reddy NNI, Prasad TS. Design and Static Analysis of Pelton Turbine Bucket. Int J Sci Technol Manag. 2015;4(08):19–25.

Nikhil JG, Sebin S, Kevin RJ, Ashwin CA. Static Analysis On Pelton Wheel Bucket Structural Deformation and Material Property Study. 2018;(January):2–6.

Received 2021-12-03
Accepted 2023-01-25
Published 2023-01-15