Contenido principal del artículo

Autores

Este trabajo muestra la influencia de diferentes condiciones de tratamientos térmicos sobre el crecimiento de nanoestructuras de óxidos de cobre, las cuales se forman al someter una película de cobre de 388 ± 7 nm de espesor a una temperatura de 400 °C en atmósfera de aire. Las capas delgadas de cobre se crecieron sobre sustratos de silicio, mediante la técnica de evaporación térmica. Los parámetros involucrados en este estudio son: la condición inicial para la cual las muestras llegan a 400 °C, es decir, con rampa y sin rampa de calentamiento y el tiempo de recocido.  Basándose en los resultados obtenidos por microscopía electrónica de barrido y difracción de rayos X, fue posible establecer que los tratamientos térmicos, generan un cambio tanto en la estructura cristalina como en la morfología de la capa de Cu, mediado por la formación de nanoestructuras de carácter mixto, conformadas por una mezcla de fases referentes a Cu metálico, Cuprita (Cu2O) y Tenorita (CuO), siendo el CuO la fase mayoritaria en todas las muestras nanoestructuradas. El tamaño de grano promedio se encuentra en un rango entre 21 – 53 nm y muestra una dependencia con el tipo de tratamiento térmico. Por otra parte, las propiedades ópticas del material fueron evaluadas por espectroscopia UV-VIS, evidenciando bandas de absorción en ambas regiones (ultravioleta y visible), las cuales fueron analizadas por el método de extrapolación de Tauc; obteniendo valores para la banda prohibida entre (1.40 – 1.47) eV, asociados a una conductividad tipo-P propia de esta clase de óxidos metálicos semiconductores.

Kevin Tamayo, Universidad del Valle, Cali

https://orcid.org/0000-0003-4490-6173

Lorena Marín, Universidad del Valle, Cali

https://orcid.org/0000-0002-3640-1338

Katherine Gross, Universidad del Valle, Cali

https://orcid.org/0000-0003-4716-8954

Cesar Amaya, Centro Nacional de Asistencia Técnica a la Industria SENA

https://orcid.org/0000-0001-8095-9251

David Reyes, CEMES - Centre d'élaboration de matériaux et d'études structurales

https://orcid.org/0000-0002-5313-5588

Wilson Lopera, Universidad del Valle, Cali

https://orcid.org/0000-0002-5094-278X

María Gómez, Universidad del Valle

https://orcid.org/0000-0002-7433-7912

1.
Tamayo K, Marín L, Gross K, Amaya C, Reyes D, Lopera W, Gómez M. Influencia del tratamiento térmico en las propiedades estructurales y ópticas de nanoestructuras basadas en óxidos de cobre. inycomp [Internet]. 29 de diciembre de 2021 [citado 26 de abril de 2024];24(1). Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11349

(1) Zoolfakar AS, Rani RA., Morfa A J, O’Mullane AP, Kalantar-zadeh K. Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J. Mater. Chem. 2014;2(27):5247–5270. https://doi.org/10.1039/C4TC00345D.

(2) Musselman KP, Marin A, Wisnet A., Scheu C, MacManus-Driscoll JL, Schmidt-Mende L. A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO-Cu2O Photovoltaics. Adv. Funct. Mater.2011;21(3):573–582. https://doi.org/10.1002/adfm.201001956.

(3) Akhavan O, Ghaderi E. Cu and CuO nanoparticles immobiliz.ed by silica thin films as antibacterial materials and photocatalysts. Surf. Coatings Technol.. 2010; 205 (1): 219–223. https://doi.org/10.1016/j.surfcoat.2010.06.036.

(4) Wu YY, Tsui WC, Liu TC. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear .2007;262(7–8):819–825. https://doi.org/10.1016/j.wear.2006.08.021.

(5) Barreca D, Fornasiero P, Gasparotto A, Gombac V, Maccato C, Montini T, et al. The Potential of Supported Cu2O and CuO Nanosystems in Photocatalytic H 2 Production. ChemSusChem .2009;2(3):2009. https://doi.org/10.1002/cssc.200900032.

(6) Li D, Hu J, Wu R, Lu J. G.Conductometric chemical sensor based on individual CuO nanowires. Nanotechnology. 2010;21(48):485502. https://doi.org/10.1088/0957-4484/21/48/485502.

(7) Wu D, Zhang Q, Tao M. LSDA+U study of cupric oxide: Electronic structure and native point defects. Phys. Rev. B - Condens. Matter Mater. Phys. 2006; 73(23): 235206. https://doi.org/10.1103/PhysRevB.73.235206.

(8) Raksa P, Nilphai S, Gardchareon A, Choopun S, Copper oxide thin film and nanowire as a barrier in ZnO dye-sensitized solar cells. Thin Solid Films. 2009; 517(17): 4741–4744. https://doi.org/10.1016/j.tsf.2009.03.027.

(9) Ogwu AA, Bouquerel E, Ademosu O, Moh S, Crossan E, Placido F. An investigation of the surface energy and optical transmittance of copper oxide thin films prepared by reactive magnetron sputtering. Acta Mater. 2005;53(19):5151–5159. https://doi.org/10.1016/j.actamat.2005.07.035.

(10) Engin M, Atay F, Kose S, Bilgin V, Akyuz I. Growth and characterization of Zn-incorporated copper oxide films. J. Electron. Mater. 2009; 38 (6): 787–796. https://doi.org/10.1007/s11664-009-0728-0.

(11) Hsieh JH, Kuo PW, Peng KC, Liu SJ, Hsueh JD, Chang SC. Opto-electronic properties of sputter-deposited Cu2O films treated with rapid thermal annealing. Thin Solid Films. 2008; 516 (16): 5449–5453. https://doi.org/10.1016/j.tsf.2007.07.097.

(12) Yu H, Yu J, Liu S, Mann S. Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres. Chem. Mater. 2007;19(17):4327–4334. https://doi.org/10.1021/cm070386d.

(13) Frietsch M, Zudock F, Goschnick J, Bruns M. CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors .Sensors Actuators, B Chem. 2000; 65 (1): 379–381. https://doi.org/10.1016/S0925-4005(99)00353-6.

(14) Chowdhuri A, Gupta V, Sreenivas K, Kumar R, Mozumdar S, Patanjali PK. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Appl. Phys. Lett. 2004; 84(7): 1180–1182. https://doi.org/10.1063/1.1646760.

(15) Chen J, Deng SZ, Xu NS, Zhang W, Wen X, Yang S.Temperature dependence of field emission from cupric oxide nanobelt films. Appl. Phys. Lett. 2003; 83(4): 746–748. https://doi.org/10.1063/1.1595156.

(16) Zhang J, Liu J,Peng Q, Wang X, Li Y. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 2006; 18(4): 867–871. https://doi.org/10.1021/cm052256f.

(17) Amikura K, Kimura T, Hamada M, Yokoyama N, Miyazaki J,Yamada, Y. Copper oxide particles produced by laser ablation in water. Appl. Surf. Sci.. 2008; 254 (21): 6976–6982. https://doi.org/10.1016/j.apsusc.2008.05.091.

(18) Mallick P, Sahu S. Structure, Microstructure and Optical Absorption Analysis of CuO Nanoparticles Synthesized by Sol-Gel Route. Nanosci. Nanotechnol. 2012; 2(3):71–74. https://doi.org/10.5923/j.nn.20120203.05.

(19) Ashokkumar SP, Vijeth H, Yesappa L, Niranjana M, Vandana M, Devendrappa H. Electrochemically synthesized polyaniline/copper oxide nano composites: To study optical band gap and electrochemical performance for energy storage devices. Inorg. Chem. Commun.2020;115: 107865. https://doi.org/10.1016/j.inoche.2020.107865.

(20) Alajlani Y, Placido F, Chu H., De Bold R, Fleming L, Gibson D. Characterisation of Cu2O/CuO thin films produced by plasma-assisted DC sputtering for solar cell application. Thin Solid Films. 2017; 642: 45–50. https://doi.org/10.1016/j.tsf.2017.09.023.

(21) Padiyath R, Seth J, Babu SV, Matienzo LJ. Deposition of copper films on silicon substrates: Film purity and silicide formation. J. Appl. Phys. 1993; 73(5): 2326–2332. https://doi.org/10.1063/1.353137.

(22) Zhang X, Wang G, Liu X, Wu J, Li M, Gu J, et al. Different CuO nanostructures: Synthesis, characterization, and applications for glucose sensors. J. Phys. Chem. 2008;112(43):16845–16849. https://doi.org/10.1021/jp806985k.

(23) Zhang X, Wang G, Liu X, Wu J, Li M, Gu J, et al. Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase. AIP Adv. 2018;8(5):055114. https://doi.org/10.1063/1.5028407.

(24) Murali DS, Kumar S,. Choudhary RJ, Wadikar A. D, Jain M.K, Subrahmanyam A. Synthesis of Cu2O from CuO thin films: Optical and electrical properties. AIP Adv. 2015; 5(4): 1–6. https://doi.org/10.1063/1.4919323.

(25) R. J. Martín-Palma, Lakhtakia A. Vapor-Deposition Techniques. Elsevier Inc., 2013. En: Lakhtakia A, Martín-Palma RJ, Editores. Engineered Biomimicry. Kidlington, Oxford; 2013. p. 383-398. https://doi.org/10.1016/B978-0-12-415995-2.00015-5.

(26) Choudhary S, Sarma JVN, Gangopadhyay S. Growth and characterization of single phase Cu2O by thermal oxidation of thin copper films. AIP Conf. Proc. 2016; 1724 (1): 020116. https://doi.org/10.1063/1.4945236.

(27) Mote V, Purushotham Y, Dole B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012; 6(1):2–9. https://doi.org/10.1186/2251-7235-6-6.

(28) Kim DK, Shin JH, Shin HS, Song JY. Single-crystalline CuO nanowire growth and its electrode-dependent resistive switching characteristics. J. Appl. Phys. 2013; 114 (4): 043514. https://doi.org/10.1063/1.4816794.

(29) Yue Y, Chen M, Ju Y, Zhang L. Stress-induced growth of well-aligned Cu2O nanowire arrays and their photovoltaic effect. Scr. Mater. 2012;66(2): 81–84. https://doi.org/10.1016/j.scriptamat.2011.09.041.

(30) Xiang L, Guo J, Wu C, Cai M, Zhou X, Zhang N. A brief review on the growth mechanism of CuO nanowires via thermal oxidation. J. Mater. Res. 2018; 33(16): 2264–2280. https://doi.org/10.1557/jmr.2018.215.

(31) Etcheverry LP,. Flores WH, Da Silva DL, Moreira EC. Annealing effects on the structural and optical properties of ZnO nanostructures. Mater. Res. 2018; 21(2): 1–7. https://doi.org/10.1590/1980-5373-mr-2017-0936.

(32) Akgul FA., Akgul G, Yildirim N, Unalan HE, Turan R. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 2014;147(3):987–995. https://doi.org/10.1016/j.matchemphys.2014.06.047.

(33) Djebian R, Boudjema B, Kabir A, Sedrati C. Physical characterization of CuO thin films obtained by thermal oxidation of vacuum evaporated Cu. Solid State Sci. 2020; 101: 106147. https://doi.org/10.1016/j.solidstatesciences.2020.106147.

(34) Jiang T, Bujoli-Doeuff M, Gautron E, Farré Y, Cario L, Pellegrin Y, et al. “Cu2O@CuO core-shell nanoparticles as photocathode for p-type dye sensitized solar cell. J. Alloys Compd.2018;769:605–610. https://doi.org/10.1016/j.jallcom.2018.07.328.

(35) Kudelski A, Grochala W, Bukowska J , Szummer A, Dolata M. Surface-enhanced Raman scattering (SERS) at Copper (I) oxide. J. Raman Spectrosc. 1998; 29 (5); 431–435. https://doi.org/10.1002/(SICI)1097-4555(199805)29:5%3C431::AID-JRS260%3E3.0.CO;2-S.

(36) Meyer BK, Polity A, Reppin D, Becker M, Hering P, Klar PJ, et al. Binary copper oxide semiconductors: From materials towards devices. Phys. Status Solidi Basic Res.2012;249(8):1487–1509. https://doi.org/10.1002/pssb.201248128.

(37) Chen LC, Chen CC, Liang KC, Chang SH, Tseng ZL, Yeh SC, et al. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells. Nanoscale Res. Lett. 2016; 11:402. https://doi.org/10.1186/s11671-016-1621-4.

(38) Umar M, Swinkels YM, De Luca M, Fasolato C, Moser L, aGadea G, et al. Morphological and stoichiometric optimization of Cu2O thin films by deposition conditions and post-growth annealing. Thin Solid Films. 2021; 732: 138763. https://doi.org/10.1016/j.tsf.2021.138763.

(39) Zwinkels J. Encyclopedia of Color Science and Technology. Springer, Berlin, Heidelberg: 2020. pp. 1–8. https://doi.org/10.1007/978-3-642-27851-8.

(40) Quinten M. Optical properties of nanoparticles: Mie and Beyound. Wiley Online Library; 2011. 75–122. https://doi.org/10.1002/9783527633135.

(41) Jubu PR, Yam FK, Igba VM, Beh KP. Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – A case study of β-Ga2O3. J. Solid State Chem.. 2020; 290: 121576. https://doi.org/10.1016/j.jssc.2020.121576.

(42) Marabelli F, Parravicini GB, Salghetti-Drioli F. Optical gap of CuO.Phys. Rev. B. 1995; 52 (3): 1433–1436. https://doi.org/10.1103/PhysRevB.52.1433.

(43) Muniz-Miranda M, Gellini C, Giorgetti E. Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation. J. Phys. Chem. C. 2011; 115(12):5021–5027. https://doi.org/10.1021/jp1086027.

(44) Dizajghorbani Aghdam H, Azadi H, Esmaeilzadeh M, Moemen Bellah S, Malekfar R. Ablation time and laser fluence impacts on the composition, morphology and optical properties of copper oxide nanoparticles. Opt. Mater. 2019; 91: 433–438. https://doi.org/10.1016/j.optmat.2019.03.027.

(45) Dizajghorbani Aghdam H, Moemen Bellah S, Malekfar R. Surface-enhanced Raman scattering studies of Cu/Cu2O Core-shell NPs obtained by laser ablation. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2019; 223:117379. https://doi.org/10.1016/j.saa.2019.117379.

(46) Sahu K, Bisht A, Khan SA, Sulania I, Singhal R, Pandey A et al. Thickness dependent optical, structural, morphological, photocatalytic and catalytic properties in Next-Generation Solar magnetron sputtered nanostructured Cu2O–CuO thin films.Ceram.Int.2020;46(10):14902–14912. https://doi.org/10.1016/j.ceramint.2020.03.017.

(47) Lira-Cantú M. The Future of Semiconductor Oxides in Next-Generation Solar Cells. The Future of Semiconductor Oxides in Next-Generation Solar Cells. India: Elsevier; 2018. 1–543 pp. https://doi.org/10.1016/c2015-0-05641-6.

(48) Sun S, Zhang X, Yang Q, Liang S, Zhang X, Yang Z. Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog. Mater. Sci. 2018; 96: 111–173. https://doi.org/10.1016/j.pmatsci.2018.03.006.

Recibido 2021-06-03
Aceptado 2021-10-02
Publicado 2021-12-29