Main Article Content

Authors

This work shows the influence of different thermal treatment conditions on the growth of copper oxide nanostructures, which are formed by subjecting a 388 ± 7 nm thick copper film to a temperature of 400 °C in air atmosphere. Thin layers of copper were grown on silicon substrates, using thermal evaporation technique. The parameters involved in this study are: The initial condition for which the samples reach 400 °C, with ramp and without heating ramp and the annealing time. Based on the results obtained by scanning electron microscopy and X-ray diffraction, it was possible to establish that thermal treatments generate a change in both the crystalline structure and the morphology of the Cu layer, mediated by the formation of nanostructures of mixed character, composed of a mixture of phases referring to Cu metallic, Cuprite (Cu2O) and Tenorite (CuO), the CuO being the majority phase in all nanostructured samples. The average grain size range is between 21 – 53 nm and depends on the type of heat treatment. Furthermore, the optical properties of the material were evaluated by UV-VIS spectroscopy, showing bands in both regions (ultraviolet and visible), which were analyzed by the Tauc extrapolation method; obtaining values for the band prohibited between (1.40 – 1.49) eV associated with a P-type conductivity of this class of semiconductor metal oxides.

Kevin Tamayo, Universidad del Valle, Grupo de Películas Delgadas (GPD),Centro de Excelencia en Nuevos Materiales Cali, Colombia,

https://orcid.org/0000-0003-4490-6173

Lorena Marín, Universidad del Valle, Grupo de Películas Delgadas (GPD), Centro de Excelencia en Nuevos Materiales Cali, Colombia

https://orcid.org/0000-0002-3640-1338 

Katherine Gross, Universidad del Valle, Grupo de Películas Delgadas (GPD), Centro de Excelencia en Nuevos Materiales, Cali, Colombia

https://orcid.org/0000-0003-4716-8954

Cesar Amaya, Centro Nacional de Asistencia Técnica a la Industria SENA, Grupo de Investigación en Desarrollo de Materiales y Productos (GIDEMP), Cali, Colombia

https://orcid.org/0000-0001-8095-9251

David Reyes, CEMES - Centre d'élaboration de matériaux et d'études structurales, Toulouse, France

https://orcid.org/0000-0002-5313-5588

Wilson Lopera, Universidad del Valle, Grupo de Películas Delgadas (GPD), Centro de Excelencia en Nuevos Materiales Cali, Colombia

https://orcid.org/0000-0002-5094-278X

María Gómez, Universidad del Valle, Grupo de Películas Delgadas (GPD), Centro de Excelencia en Nuevos Materiales Cali, Colombia

https://orcid.org/0000-0002-7433-7912

1.
Tamayo K, Marín L, Gross K, Amaya C, Reyes D, Lopera W, Gómez M. Influence of thermal annealing on the structural and optical properties of nanostructures based on copper oxides. inycomp [Internet]. 2022 Jan. 15 [cited 2025 Jan. 22];24(1). Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11349

(1) Zoolfakar AS, Rani RA., Morfa A J, O’Mullane AP, Kalantar-zadeh K. Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J. Mater. Chem. 2014;2(27):5247–5270. https://doi.org/10.1039/C4TC00345D.

(2) Musselman KP, Marin A, Wisnet A., Scheu C, MacManus-Driscoll JL, Schmidt-Mende L. A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO-Cu2O Photovoltaics. Adv. Funct. Mater.2011;21(3):573–582. https://doi.org/10.1002/adfm.201001956.

(3) Akhavan O, Ghaderi E. Cu and CuO nanoparticles immobiliz.ed by silica thin films as antibacterial materials and photocatalysts. Surf. Coatings Technol.. 2010; 205 (1): 219–223. https://doi.org/10.1016/j.surfcoat.2010.06.036.

(4) Wu YY, Tsui WC, Liu TC. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear .2007;262(7–8):819–825. https://doi.org/10.1016/j.wear.2006.08.021.

(5) Barreca D, Fornasiero P, Gasparotto A, Gombac V, Maccato C, Montini T, et al. The Potential of Supported Cu2O and CuO Nanosystems in Photocatalytic H 2 Production. ChemSusChem .2009;2(3):2009. https://doi.org/10.1002/cssc.200900032.

(6) Li D, Hu J, Wu R, Lu J. G.Conductometric chemical sensor based on individual CuO nanowires. Nanotechnology. 2010;21(48):485502. https://doi.org/10.1088/0957-4484/21/48/485502.

(7) Wu D, Zhang Q, Tao M. LSDA+U study of cupric oxide: Electronic structure and native point defects. Phys. Rev. B - Condens. Matter Mater. Phys. 2006; 73(23): 235206. https://doi.org/10.1103/PhysRevB.73.235206.

(8) Raksa P, Nilphai S, Gardchareon A, Choopun S, Copper oxide thin film and nanowire as a barrier in ZnO dye-sensitized solar cells. Thin Solid Films. 2009; 517(17): 4741–4744. https://doi.org/10.1016/j.tsf.2009.03.027.

(9) Ogwu AA, Bouquerel E, Ademosu O, Moh S, Crossan E, Placido F. An investigation of the surface energy and optical transmittance of copper oxide thin films prepared by reactive magnetron sputtering. Acta Mater. 2005;53(19):5151–5159. https://doi.org/10.1016/j.actamat.2005.07.035.

(10) Engin M, Atay F, Kose S, Bilgin V, Akyuz I. Growth and characterization of Zn-incorporated copper oxide films. J. Electron. Mater. 2009; 38 (6): 787–796. https://doi.org/10.1007/s11664-009-0728-0.

(11) Hsieh JH, Kuo PW, Peng KC, Liu SJ, Hsueh JD, Chang SC. Opto-electronic properties of sputter-deposited Cu2O films treated with rapid thermal annealing. Thin Solid Films. 2008; 516 (16): 5449–5453. https://doi.org/10.1016/j.tsf.2007.07.097.

(12) Yu H, Yu J, Liu S, Mann S. Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres. Chem. Mater. 2007;19(17):4327–4334. https://doi.org/10.1021/cm070386d.

(13) Frietsch M, Zudock F, Goschnick J, Bruns M. CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors .Sensors Actuators, B Chem. 2000; 65 (1): 379–381. https://doi.org/10.1016/S0925-4005(99)00353-6.

(14) Chowdhuri A, Gupta V, Sreenivas K, Kumar R, Mozumdar S, Patanjali PK. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Appl. Phys. Lett. 2004; 84(7): 1180–1182. https://doi.org/10.1063/1.1646760.

(15) Chen J, Deng SZ, Xu NS, Zhang W, Wen X, Yang S.Temperature dependence of field emission from cupric oxide nanobelt films. Appl. Phys. Lett. 2003; 83(4): 746–748. https://doi.org/10.1063/1.1595156.

(16) Zhang J, Liu J,Peng Q, Wang X, Li Y. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 2006; 18(4): 867–871. https://doi.org/10.1021/cm052256f.

(17) Amikura K, Kimura T, Hamada M, Yokoyama N, Miyazaki J,Yamada, Y. Copper oxide particles produced by laser ablation in water. Appl. Surf. Sci.. 2008; 254 (21): 6976–6982. https://doi.org/10.1016/j.apsusc.2008.05.091.

(18) Mallick P, Sahu S. Structure, Microstructure and Optical Absorption Analysis of CuO Nanoparticles Synthesized by Sol-Gel Route. Nanosci. Nanotechnol. 2012; 2(3):71–74. https://doi.org/10.5923/j.nn.20120203.05.

(19) Ashokkumar SP, Vijeth H, Yesappa L, Niranjana M, Vandana M, Devendrappa H. Electrochemically synthesized polyaniline/copper oxide nano composites: To study optical band gap and electrochemical performance for energy storage devices. Inorg. Chem. Commun.2020;115: 107865. https://doi.org/10.1016/j.inoche.2020.107865.

(20) Alajlani Y, Placido F, Chu H., De Bold R, Fleming L, Gibson D. Characterisation of Cu2O/CuO thin films produced by plasma-assisted DC sputtering for solar cell application. Thin Solid Films. 2017; 642: 45–50. https://doi.org/10.1016/j.tsf.2017.09.023.

(21) Padiyath R, Seth J, Babu SV, Matienzo LJ. Deposition of copper films on silicon substrates: Film purity and silicide formation. J. Appl. Phys. 1993; 73(5): 2326–2332. https://doi.org/10.1063/1.353137.

(22) Zhang X, Wang G, Liu X, Wu J, Li M, Gu J, et al. Different CuO nanostructures: Synthesis, characterization, and applications for glucose sensors. J. Phys. Chem. 2008;112(43):16845–16849. https://doi.org/10.1021/jp806985k.

(23) Zhang X, Wang G, Liu X, Wu J, Li M, Gu J, et al. Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase. AIP Adv. 2018;8(5):055114. https://doi.org/10.1063/1.5028407.

(24) Murali DS, Kumar S,. Choudhary RJ, Wadikar A. D, Jain M.K, Subrahmanyam A. Synthesis of Cu2O from CuO thin films: Optical and electrical properties. AIP Adv. 2015; 5(4): 1–6. https://doi.org/10.1063/1.4919323.

(25) R. J. Martín-Palma, Lakhtakia A. Vapor-Deposition Techniques. Elsevier Inc., 2013. En: Lakhtakia A, Martín-Palma RJ, Editores. Engineered Biomimicry. Kidlington, Oxford; 2013. p. 383-398. https://doi.org/10.1016/B978-0-12-415995-2.00015-5.

(26) Choudhary S, Sarma JVN, Gangopadhyay S. Growth and characterization of single phase Cu2O by thermal oxidation of thin copper films. AIP Conf. Proc. 2016; 1724 (1): 020116. https://doi.org/10.1063/1.4945236.

(27) Mote V, Purushotham Y, Dole B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012; 6(1):2–9. https://doi.org/10.1186/2251-7235-6-6.

(28) Kim DK, Shin JH, Shin HS, Song JY. Single-crystalline CuO nanowire growth and its electrode-dependent resistive switching characteristics. J. Appl. Phys. 2013; 114 (4): 043514. https://doi.org/10.1063/1.4816794.

(29) Yue Y, Chen M, Ju Y, Zhang L. Stress-induced growth of well-aligned Cu2O nanowire arrays and their photovoltaic effect. Scr. Mater. 2012;66(2): 81–84. https://doi.org/10.1016/j.scriptamat.2011.09.041.

(30) Xiang L, Guo J, Wu C, Cai M, Zhou X, Zhang N. A brief review on the growth mechanism of CuO nanowires via thermal oxidation. J. Mater. Res. 2018; 33(16): 2264–2280. https://doi.org/10.1557/jmr.2018.215.

(31) Etcheverry LP,. Flores WH, Da Silva DL, Moreira EC. Annealing effects on the structural and optical properties of ZnO nanostructures. Mater. Res. 2018; 21(2): 1–7. https://doi.org/10.1590/1980-5373-mr-2017-0936.

(32) Akgul FA., Akgul G, Yildirim N, Unalan HE, Turan R. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 2014;147(3):987–995. https://doi.org/10.1016/j.matchemphys.2014.06.047.

(33) Djebian R, Boudjema B, Kabir A, Sedrati C. Physical characterization of CuO thin films obtained by thermal oxidation of vacuum evaporated Cu. Solid State Sci. 2020; 101: 106147. https://doi.org/10.1016/j.solidstatesciences.2020.106147.

(34) Jiang T, Bujoli-Doeuff M, Gautron E, Farré Y, Cario L, Pellegrin Y, et al. “Cu2O@CuO core-shell nanoparticles as photocathode for p-type dye sensitized solar cell. J. Alloys Compd.2018;769:605–610. https://doi.org/10.1016/j.jallcom.2018.07.328.

(35) Kudelski A, Grochala W, Bukowska J , Szummer A, Dolata M. Surface-enhanced Raman scattering (SERS) at Copper (I) oxide. J. Raman Spectrosc. 1998; 29 (5); 431–435. https://doi.org/10.1002/(SICI)1097-4555(199805)29:5%3C431::AID-JRS260%3E3.0.CO;2-S.

(36) Meyer BK, Polity A, Reppin D, Becker M, Hering P, Klar PJ, et al. Binary copper oxide semiconductors: From materials towards devices. Phys. Status Solidi Basic Res.2012;249(8):1487–1509. https://doi.org/10.1002/pssb.201248128.

(37) Chen LC, Chen CC, Liang KC, Chang SH, Tseng ZL, Yeh SC, et al. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells. Nanoscale Res. Lett. 2016; 11:402. https://doi.org/10.1186/s11671-016-1621-4.

(38) Umar M, Swinkels YM, De Luca M, Fasolato C, Moser L, aGadea G, et al. Morphological and stoichiometric optimization of Cu2O thin films by deposition conditions and post-growth annealing. Thin Solid Films. 2021; 732: 138763. https://doi.org/10.1016/j.tsf.2021.138763.

(39) Zwinkels J. Encyclopedia of Color Science and Technology. Springer, Berlin, Heidelberg: 2020. pp. 1–8. https://doi.org/10.1007/978-3-642-27851-8.

(40) Quinten M. Optical properties of nanoparticles: Mie and Beyound. Wiley Online Library; 2011. 75–122. https://doi.org/10.1002/9783527633135.

(41) Jubu PR, Yam FK, Igba VM, Beh KP. Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – A case study of β-Ga2O3. J. Solid State Chem.. 2020; 290: 121576. https://doi.org/10.1016/j.jssc.2020.121576.

(42) Marabelli F, Parravicini GB, Salghetti-Drioli F. Optical gap of CuO.Phys. Rev. B. 1995; 52 (3): 1433–1436. https://doi.org/10.1103/PhysRevB.52.1433.

(43) Muniz-Miranda M, Gellini C, Giorgetti E. Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation. J. Phys. Chem. C. 2011; 115(12):5021–5027. https://doi.org/10.1021/jp1086027.

(44) Dizajghorbani Aghdam H, Azadi H, Esmaeilzadeh M, Moemen Bellah S, Malekfar R. Ablation time and laser fluence impacts on the composition, morphology and optical properties of copper oxide nanoparticles. Opt. Mater. 2019; 91: 433–438. https://doi.org/10.1016/j.optmat.2019.03.027.

(45) Dizajghorbani Aghdam H, Moemen Bellah S, Malekfar R. Surface-enhanced Raman scattering studies of Cu/Cu2O Core-shell NPs obtained by laser ablation. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2019; 223:117379. https://doi.org/10.1016/j.saa.2019.117379.

(46) Sahu K, Bisht A, Khan SA, Sulania I, Singhal R, Pandey A et al. Thickness dependent optical, structural, morphological, photocatalytic and catalytic properties in Next-Generation Solar magnetron sputtered nanostructured Cu2O–CuO thin films.Ceram.Int.2020;46(10):14902–14912. https://doi.org/10.1016/j.ceramint.2020.03.017.

(47) Lira-Cantú M. The Future of Semiconductor Oxides in Next-Generation Solar Cells. The Future of Semiconductor Oxides in Next-Generation Solar Cells. India: Elsevier; 2018. 1–543 pp. https://doi.org/10.1016/c2015-0-05641-6.

(48) Sun S, Zhang X, Yang Q, Liang S, Zhang X, Yang Z. Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog. Mater. Sci. 2018; 96: 111–173. https://doi.org/10.1016/j.pmatsci.2018.03.006.

Received 2021-06-03
Accepted 2021-10-02
Published 2022-01-15