Main Article Content

Authors

Antibiotics are relevant pharmaceuticals for the treatment of infectious diseases in humans and animals having a microbial origin. These substances are frequently found in the environment, inducing a negative impact. Therefore, the present review focuses on the antibiotics most consumed in Colombia, their excretion via urine and their presence in wastewater, considering reports from the World Health Organization (WHO), research articles, academic reports and databases. Beta-lactams (mainly penicillins such as amoxicillin, ampicillin and dicloxacillin; and cephalosporins such as cephalexin, ceftriaxone and cephradine) are the most consumed antibiotics in Colombia, followed by fluoroquinolones (such as ciprofloxacin), tetracyclines (such as doxycycline), and macrolides (such as azithromycin). The most consumed antibiotics show excretion percentages (as unchanged substances) in the urine greater than 30%. Additionally, antibiotics such as ciprofloxacin, azithromycin, and sulfamethoxazole are frequently found in colombian wastewater and environmental water. It is important to mention that this work is an initial approach on the consumption, excretion and presence of antibiotics in wastewater in Colombia, with information accessible to the general community. Also, this work represents a starting point for future works on pharmaceuticals consumption, impact of antibiotics in environmental water, and research on alternatives for elimination of these substances in aqueous matrices such as urine.

1.
Serna-Galvis E, Martínez-Mena YL, Porras J, Torres-Palma RA. Highly consumed antibiotics in Colombia, excretion in urine and the presence in wastewater – a review. inycomp [Internet]. 2022 Jan. 15 [cited 2024 Dec. 21];24(1). Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11267

(1) Cabrera-García PA. Utilización de antibióticos de uso humano en caninos y felinos atendidos en la clínica de pequeños animales de la Universidad Nacional de Colombia [Tesis de maestría]. Bogotá: Universidad Nacional de Colombia; 2010. Available from: https://repositorio.unal.edu.co/handle/unal/70528

(2) González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 2013;47(6):2050–64. https://doi.org/10.1016/j.watres.2013.01.020

(3) Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98. https://doi.org/10.1016/S1473-3099(13)70318-9

(4) Cerda RJ. Antibióticos: su uso racional. Rev. Arg. Anest. 2000;58(3):174–84. Available from: https://www.anestesia.org.ar/search/articulos_completos/1/1/169/c.pdf

(5) Winker M, Tettenborn F, Faika D, Gulyas H, Otterpohl R. Comparison of analytical and theoretical pharmaceutical concentrations in human urine in Germany. Water Res. 2008; 42(14):3633–40. https://doi.org/10.1016/j.watres.2008.06.002

(6) Winker M, Faika D, Gulyas H, Otterpohl R. A comparison of human pharmaceutical concentrations in raw municipal wastewater and yellowwater. Sci Total Environ. 2008;399(1–3):96–104. https://doi.org/10.1016/j.scitotenv.2008.03.027

(7) Farmacontaminación. Impacto ambiental de los medicamentos. Infac [Internet]. 2016;24(10):60–1. Available from: https://files.sld.cu/medicamentos/files/2017/01/INFAC_Vol_24_n_10_farmacontaminacion.pdf

(8) Bouki C, Venieri D, Diamadopoulos E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Ecotoxicol Environ Saf. 2013;91:1–9. https://doi.org/10.1016/j.ecoenv.2013.01.016

(9) Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment. Water Res. 2013;47(3):957–95. https://doi.org/10.1016/j.watres.2012.11.027

(10) Novo A, André S, Viana P, Nunes OC, Manaia CM. Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res. 2013;47(5):1875–87. https://doi.org/10.1016/j.watres.2013.01.010

(11) Da Silva MF, Tiago I, Verìssimo A, Boaventura RAR, Nunes OC, Manaia CM. Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiol Ecol. 2006;55(2):322–9. https://doi.org/10.1111/j.1574-6941.2005.00032.x

(12) WHO. WHO Report on Surveillance of Antibiotic Consumption 2016-2018 [Internet]. Geneva; 2018. Available from: https://www.who.int/publications/i/item/who-report-on-surveillance-of-antibiotic-consumption

(13) Peña V, Bernal N. Evaluación del uso de antibióticos en el municipio de Cajicá, Cundinamarca, Colombia. [Tesis de pregrado]. Bogotá: Universidad de ciencias ambientales y aplicadas; 2015. Available from: https://repository.udca.edu.co/bitstream/handle/11158/397/EVALUACI%D3N USO DE ANTIBI%D3TICOS EN CAJIC%C1.pdf;jsessionid=2A0C4D4C05F9E43B0F2AA3BF4E0CDD68?sequence=1

(14) Fajardo-Zapata ÁL, Méndez-Casallas FJ, Hernández-Niño JF, Molina LH, Tarazona AM, Nossa C, et al. La automedicación de antibióticos: Un problema de salud pública. Salud Uninorte. 2013;29(2):226–35.

(15) Castro-Espinosa J, Molineros-Gallón LF. Consumo de antibióticos a partir de las ventas en droguerías en Santiago de Cali, Colombia. Rev Cuba Farm. 2016;50(1):68–84.

(16) Álvarez L, Colmenares B, Mina A, Montealegre L, Ruiz F. Automedicación con antibióticos en Bogotá, Cali, Zipaquira, Facatativa y Santander de Quilichao “una realidad vigente en nuestro país. [Tesis de pregrado]. Palmira: UNAD; 2012. Available from: https://repository.unad.edu.co/handle/10596/25989

(17) Hernández-Gámez O, Camacho-Romero O, González-Torres HJ, Pajaro-González Y, Silva-Castro MM. Estudio de utilización de antibióticos en Hospitales de Mediana y Alta Complejidad del Departamento del Atlántico-Colombia entre el 2016 y 2017 [Internet]. AVFT. 2017;37(5):429-433. Available from: http://hdl.handle.net/20.500.12442/2873

(18) López JJ, Garay AM. Study of the use of antibiotics in the outpatient service of a public hospital in Bogotá, D. C. Rev Colomb Ciencias Químico-Farmacéuticas [Internet]. 2016;45(1):456. https://doi.org/10.15446/rcciquifa.v45n1.58014

(19) Velasquez P. ¿Cómo está Colombia en el uso de antibióticos? ConsultorSalud [Internet]. 2020 [cited 2020 Jan 22]. Available from: https://consultorsalud.com/como-esta-colombia-en-el-uso-de-los-antibioticos/#:~:text=All%C3%AD%20se%20pudo%20establecer%20que,%2C5%25%20para%20antibi%C3%B3ticos%20RESERVE

(20) Castro-Espinoza J, Molineros LF. Cualificación y experiencia de los vendedores de droguería para la dispensación de amoxicilina en una comuna de Santiago de Cali, Colombia. Rev Colomb Ciencias Químico-Farmacéuticas [Internet]. 2018; 47(1):53–70. https://doi.org/10.15446/rcciquifa.v47n1.70658

(21) Rubio AG. Informe Final De Evento Consumo De Antibióticos En El Ámbito Hospitalario, Colombia, 2016 [Internet]. Bogotá: Instituto Nacional de Salud; 2014. Available from: https://www.ins.gov.co/buscador-eventos/Informesdeevento/Consumo de antibiotico intrahospitalario 2016.pdf

(22) Wirtz VJ, Dreser A, Gonzales R. Trends in antibiotic utilization in eight Latin American countries, 1997-2007. Rev Panam Salud Pública [Internet]. 2010;27(3):219–25. Available from: https://scielosp.org/article/rpsp/2010.v27n3/219-225/en/

(23) Machado-Alba JE, González-Santos DM. Dispensación de antibióticos de uso ambulatorio en una población colombiana. Rev Salud Pública. 2009;11(5):734–44.

(24) Información detallada sobre fármacos objetivo [Internet]. DrugBank. 2007 [cited 2021 Jan 10]. Available from: https://go.drugbank.com/

(25) Bodey GP, Nance J. Amoxicillin: In Vitro and Pharmacological Studies. Antimicrob Agents Chemother. 1972;1(4):358–62. https://doi.org/10.1128/AAC.1.4.358

(26) FAO/WHO Expert committee. Ampicillin-Residue Monograph [Internet]. JECFA; 2017. Available from: http://www.fao.org/3/ca3711en/ca3711en.pdf

(27) Wu G, Zheng Y, Zhou H, Hu X, Liu J, Zhai Y, et al. Safety and pharmacokinetics of dicloxacillin in healthy Chinese volunteers following single and multiple oral doses. Drug Des Devel Ther. 2015;9:5687-95. https://doi.org/10.2147/DDDT.S92117

(28) Braun P, Tillotson JR, Wilcox C, Finland M. Cephalexin and Cephaloglycin Activity In Vitro and Absorption and Urinary Excretion of Single Oral Doses in Normal Young Adults. Appl Microbiol. 1968;16(11):1684–94. https://doi.org/10.1128/am.16.11.1684-1694.1968

(29) Guzmán ML, Romañuk CB, Sanchez MF, Luciani Giacobbe LC, Alarcón-Ramirez LP, Battistini FD, et al. Urinary excretion of ciprofloxacin after administration of extended-release tablets in healthy volunteers. Swellable drug-polyelectrolyte matrix versus bilayer tablets. Drug Deliv Transl Res. 2018; 8:123–31. https://doi.org/10.1007/s13346-017-0442-z

(30) Singlas E. Clinical pharmacokinetics of azithromycin. Pathol. Biol. 1995;43(6):505–11. Available from: https://europepmc.org/article/med/8539072

(31) Serna-Galvis EA, Silva-Agredo J, Botero-Coy AM, Moncayo-Lasso A, Hernández F, Torres-Palma RA. Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. Sci Total Environ. 2019;670:623–32. https://doi.org/10.1016/j.scitotenv.2019.03.153

(32) Botero-Coy AM, Martínez-Pachón D, Boix C, Rincón RJ, Castillo N, Arias-Marín LP, et al. An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci Total Environ. 2018;642:842–53. https://doi.org/10.1016/j.scitotenv.2018.06.088

(33) Verlicchi P, Galletti A, Petrovic M, Barceló D. Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J Hydrol. 2010;389(3–4):416–28. https://doi.org/10.1016/j.jhydrol.2010.06.005

(34) Verlicchi P, Al Aukidy M, Zambello E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review. Sci Total Environ. 2012;429:123–55. https://doi.org/10.1016/j.scitotenv.2012.04.028

(35) Nguyen PY, Carvalho G, Polesel F, Torresi E, Rodrigues AM, Rodrigues JE, et al. Bioaugmentation of activated sludge with Achromobacter denitrificans PR1 for enhancing the biotransformation of sulfamethoxazole and its human conjugates in real wastewater: Kinetic tests and modelling. Chem Eng J. 2018;352:79–89. https://doi.org/10.1016/j.cej.2018.07.011

(36) Hernández F, Ibáñez M, Botero-Coy A-M, Bade R, Bustos-López MC, Rincón J, et al. LC-QTOF MS screening of more than 1,000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia. Anal Bioanal Chem. 2015;407:6405–16. https://doi.org/10.1007/s00216-015-8796-x

(37) Bedoya-Ríos DF, Lara-Borrero JA, Duque-Pardo V, Jimenez EM, Toro AF, Lara-borrero JA, et al. Study of the occurrence and ecosystem danger of selected endocrine disruptors in the urban water cycle of the city of Bogotá, Colombia. J Environ Sci Heal Part A. 2018; 53(4): 317-325. https://doi.org/10.1080/10934529.2017.1401372

(38) Madera-Parra CA, Jiménez-Bambague EM, Toro-Vélez AF, Lara-Borrero JA, Bedoya-Ríos DF, Duque-Pardo V. Estudio exploratorio de la presencia de microcontaminantes en el ciclo urbano del agua en Colombia: caso de estudio Santiago de Cali. Rev Int Contam Ambient. 2018; 1;34(3):475–87. https://doi.org/10.20937/RICA.2018.34.03.10

(39) Martínez-Pachón D, Echeverry-Gallego RA, Serna-Galvis EA, Villarreal JM, Botero-Coy AM, Hernández F, et al. Treatment of wastewater effluents from Bogotá – Colombia by the photo-electro-Fenton process: Elimination of bacteria and pharmaceutical. Sci Total Environ. 2021;772:144890. https://doi.org/10.1016/j.scitotenv.2020.144890

(40) Ding C, He J. Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol. 2010; 87(3):925–41. https://doi.org/10.1007/s00253-010-2649-5

(41) Kraemer SA, Ramachandran A, Perron GG. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms. 2019;7(6):180. https://doi.org/10.3390/microorganisms7060180.

(42) Serna-Galvis EA, Botero-Coy AM, Martínez-Pachón D, Moncayo-Lasso A, Ibáñez M, Hernández F, et al. Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. Water Res. 2019;154:349–60. https://doi.org/10.1016/j.watres.2019.01.045.

(43) Narvaez JF, Jimenez C. Pharmaceutical products in the environment: sources, effects and risks. Vitae. 2012;19(1):93–108.

(44) Bourgin M, Beck B, Boehler M, Borowska E, Fleiner J, Salhi E, et al. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. Water Res. 2018;129:486–98. https://doi.org/10.1016/j.watres.2017.10.036

(45) Dale T. Swiss for Sustainability [Internet]. waterworld.com. 2021 [cited 2021 Jul 30]. Available from: https://www.waterworld.com/international/wastewater/article/14201525/swiss-for-sustainability

Received 2021-05-11
Accepted 2021-08-26
Published 2022-01-15