Nitrogen nutritional classification of sugarcane crops by wavelet synthetization of canopy hyperspectral data
Main Article Content
Reflectance optical spectra of sugarcane canopy are analyzed by means of a continuous wavelet transformation (CWT), using the Ricker function as the mother wavelet transform, which represents the absorption due to physiological characteristics as the content of water, nutrients, or chlorophyll. The spectra correspond to four nitrogen levels, which represent different fertilization states, leaving the other variables such as irrigation, fertilizer source, season, and application method as constants. Each spectrum was grouped by fertilization level, to analyze the wavelet spectrogram of each one. As a result of this CWT analysis, it was obtained that the dyadic 8th scale shows relevant information on the absorption of the sugarcane crop at the wavelength of 760 nm, a wavelength previously reported in the literature as a variable that shows a high correlation with the nitrogenization of the sugar cane plant. The results of the wavelet analysis, at the wavelength of 760 nm ± 0.6nm, show that by means of the maximum absorption data, the crop can be classified to know whether it is or not within a region of optimal fertilization (with four sigmas). Similarly, this study shows a correlation of R2 = 0.91 between the information of the maximum wavelet power, analyzing the -8 scale, with the level of nitrogen fertilization of a sugarcane crop.
(1). Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA. A holistic view of nitrogen acquisition in plants. J Exp Bot. 2011;62(4):1455–66. https://doi.org/10.1093/jxb/erq425
(2). Sánchez Navarro D, Lis-Gutiérrez JP, Campo Robledo J, Herrera Saavedra JP. Estudio sobre el sector de fertilizantes en Colombia [Internet]. Superintendencia de Industria y Comercio; 2013. Disponible en:https://www.sic.gov.co/recursos_user/documentos/Estudios-Academicos/Documentos-Elaborados-Grupo-Estudios-Economicos/6_Estudio_Sobre_Sector_Fertilizantes_Colombia_Octubre_2013.pdf
(3). Reyes-Trujillo A, Daza-Torres MC, Galindez-Jamioy CA, Rosero-García EE, Muñoz-Arboleda F, Solarte-Rodriguez E. Estimating canopy nitrogen concentration of sugarcane crop using in situ spectroscopy. Heliyon. 2021;7(3): E06566.https://doi.org/10.1016/j.heliyon.2021.e06566
(4). Reyes-Trujillo A. Bioindicadores espectrales para monitoreo del cultivo de caña de azúcar en condiciones de tensión ambiental por disponibilidad de nitrógeno [Tesis doctoral]. Cali: Universidad del Valle; 2020.
(5). Ramírez-López L. Espectroscopia infrarroja como una fábrica analítica en la agricultura. En: XII Congreso Latinoamericano y del Caribe de Ingeniería Agrícola (CLIA). Bogotá, Colombia: Asociación latinoamericana y del caribe de ingeniería agrícola, Asociación de ingenieros agrícolas de Colombia, Universidad Nacional de Colombia; 2016. p. 23–6.
(6). Murillo Sandoval PJ, Carbonell González JA. Principios y aplicaciones de la percepción remota en el cultivo de la caña de azúcar en Colombia. Cenicaña. San Antonio de los Caballeros, Colombia: Cenicaña; 2012. 183 p. Disponible en: https://www.cenicana.org/pdf_privado/documentos_no_seriados/libro_percepcion_remota/principios-y-aplicaciones_percepcion-remota.pdf
(7). García R, Arturo C. Método para estimar el contenido de Nitrógeno en cultivos de maíz (Zea mays L.) con base en espectrometría. Caso de estudio Puerto Gaitán, Meta [Tesis de maestría] Bogotá: Universidad Nacional de Colombia; 2015. Disponible en: https://repositorio.unal.edu.co/handle/unal/56151
(8). Arauzo M, Valladolid M, Martínez-Bastida JJ. Spatio-temporal dynamics of nitrogen in river-alluvial aquifer systems affected by diffuse pollution from agricultural sources: Implications for the implementation of the Nitrates Directive. J Hydrol. 2011;411(1):155–68. https://doi.org/10.1016/j.jhydrol.2011.10.004
(9). Jégo G, Sánchez-Pérez JM, Justes E. Predicting soil water and mineral nitrogen contents with the STICS model for estimating nitrate leaching under agricultural fields. Agric Water Manag. 2012; 107:54–65. https://doi.org/10.1016/j.agwat.2012.01.007
(10). Cheng T, Riaño D, Ustin SL. Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote Sens Environ. 2014; 143:39–53. https://doi.org/10.1016/j.rse.2013.11.018
(11). Cheng T, Rivard B, Sánchez-Azofeifa A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens Environ. 2011; 115(2):659–70. https://doi.org/10.1016/j.rse.2010.11.001
(12). Ullah S, Skidmore AK, Naeem M, Schlerf M. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis. Sci Total Environ. 2012; 437:145–52. https://doi.org/10.1016/j.scitotenv.2012.08.025
(13). Liao Q, Wang J, Yang G, Zhang D, Lii H, Fu Y, et al. Comparison of spectral indices and wavelet transform for estimating chlorophyll content of maize from hyperspectral reflectance. J Appl Remote Sens. 2013;7(1):073575. https://doi.org/10.1117/1.JRS.7.073575
(14). Kumar P, Foufoula-Georgiou E. Wavelet analysis for geophysical applications. Rev Geophys. 1997; 35(4):385–412. https://doi.org/10.1029/97RG00427
(15). Torrence C, Compo GP. A Practical Guide to Wavelet Analysis. Bull Am Meteorol Soc [Internet]. el 1 de enero de 1998; 79(1):61–78. https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2
(16). Unser M, Aldroubi A. A review of wavelets in biomedical applications. Proc IEEE. 1996;84(4):626–38. https://doi.org/10.1109/5.488704
(17). Amolins K, Zhang Y, Dare P. Wavelet based image fusion techniques — An introduction, review and comparison. ISPRS J Photogramm Remote Sens. Septiembre de 2007; 62(4):249–63. https://doi.org/10.1016/j.isprsjprs.2007.05.009
(18). Antonini M, Barlaud M, Mathieu P, Daubechies I. Image coding using wavelet transform. IEEE Trans Image Process. 1992;1(2):205–20. https://doi.org/10.1109/83.136597
(19). Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H. A crop phenology detection method using time-series MODIS data. Remote Sens Environ. 2005; 96(3):366–74. https://doi.org/10.1016/j.rse.2005.03.008
(20). Blackburn GA. Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation. Int J Remote Sens. 2007; 28(12):2831–55. https://doi.org/10.1080/01431160600928625
(21). Zhang J, Rivard B, Sánchez-Azofeifa A, Castro-Esau K. Intra- and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species identification using HYDICE imagery. Remote Sens Environ. 2006;105(2):129–41. https://doi.org/10.1016/j.rse.2006.06.010
(22). Bruce LM, Li J. Wavelets for computationally efficient hyperspectral derivative analysis. IEEE Trans Geosci Remote Sens. 2001;39(7):1540–6. https://doi.org/10.1109/36.934085
(23). Blackburn GA, Ferwerda JG. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sens Environ. 2008; 112(4):1614–32. https://doi.org/10.1016/j.rse.2007.08.005
(24). Rivard B, Feng J, Gallie A, Sanchez-Azofeifa A. Continuous wavelets for the improved use of spectral libraries and hyperspectral data. Remote Sens Environ. el 16 de junio de 2008;112(6):2850–62. https://doi.org/10.1016/j.rse.2008.01.016
(25). Grossmann A, Morlet J. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM J Math Anal. 1984;15(4):723–36. https://doi.org/10.1137/0515056
Accepted 2021-06-03
Published 2022-01-15
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).