A chatbot to support information needs in times of COVID-19
Main Article Content
This paper aims to describe the design, development, and testing of a question-answering chatbot to inform COVID-19 at Cali town. The chatbot is based on the model of natural language processing, and it is capable of holding a question-and-answer conversation about the pandemic. This document presents the sources of information to solve information needs in the Cali town's risk scenery from March to December 2020; Based on the sources of information, a corpus with 636 sentences was built. Three models were trained bases on the corpus. The models were trained incremental prototyping: A baseline model that responds to general questions, cases, active cases, and deaths at a geographic point of an area or region of interest (BC), the baseline model, zones and news, decrees or regulations generated by the Government during the risk situation (BCN) and the final model that responds the previous items and to frequently asked questions (BFAQ). A satisfaction survey of the prototype was developed to evaluate the chatbot, and the models were evaluated by metrics of PLN precision, coverage, and F-measure. The analysis and results showed that the final model (BFAQS) showed values upper 88% in the three measurements., besides, the BFACS held 1480 conversations, with an average conversation engagement of 4.12 minutes. Furthermore, the survey results show that 87% would use the chatbot again to obtain information about COVID-19.
(1) Bickmore TW, Pfeifer LM, Jack BW. Taking the time to care: empowering low health literacy hospital patients with virtual nurse agents. In: Proceedings of the SIGCHI conference on human factors in computing systems. 2009. p. 1265-74. https://doi.org/10.1145/1518701.1518891
(2) Jerald J. The VR book: Human-centered design for virtual reality. Morgan & Claypool; 2015. https://doi.org/10.1145/2792790
(3) Amato F, Marrone S, Moscato V, Piantadosi G, Picariello A, Sansone C. Chatbots meet ehealth: Automatizing healthcare. CEUR Workshop on Artificial Intelligence with Application in Health. 2017;1982(6):40-49.
(4) Laranjo L, Dunn AG, Tong HL, Kocaballi AB, Chen J, Bashir R, et al. Conversational agents in healthcare: a systematic review. J Am Med Inform Assoc. 2018;25(9):1248-58. https://doi.org/10.1093/jamia/ocy072.
(5) Herriman M, Meer E, Rosin R, Lee V, Washington V, Volpp KG. Asked and answered: Building a chatbot to address covid-19-related concerns. NEJM Catal Innov Care Deliv. In press 2020.
(6) Shevat A. Designing bots: Creating conversational experiences. O’Reilly Media, Inc.; 2017.
(7) Dialogflow [Internet]. [citado 22 de diciembre de 2020]. Disponible en: https://dialogflow.cloud.google.com/#/getStarted.
(8) Watson Assistant - Overview [Internet]. 2021 [citado 10 de febrero de 2021]. Disponible en: https://www.ibm.com/cloud/watson-assistant
(9) Azure Bot Service|Microsoft Azure [Internet]. [citado 10 de febrero de 2021]. Disponible en: https://azure.microsoft.com/es-es/services/bot-services/
(10) Chatbot | Deep learning | Amazon Lex [Internet]. [citado 10 de febrero de 2021]. Disponible en: https://aws.amazon.com/es/lex/
(11) Bocklisch T, Faulkner J, Pawlowski N, Nichol A. Rasa: Open-source language understanding and dialogue management. ArXiv Prepr ArXiv171205181. 2017. https://arxiv.org/abs/1712.05181.
(12) Flow XO – Easy to use chatbot platform [Internet]. Flow XO. [citado 10 de febrero de 2021]. Disponible en: https://flowxo.com/
(13) Martin A, Nateqi J, Gruarin S, Munsch N, Abdarahmane I, Zobel M, et al. An artificial intelligence-based first-line defence against COVID-19: digitally screening citizens for risks via a chatbot. Sci Rep. 2020;10(1):1-7. https://doi.org/10.1038/s41598-020-75912-x
(14) Miner AS, Laranjo L, Kocaballi AB. Chatbots in the fight against the COVID-19 pandemic. Npj Digit Med. 2020;3(1):1-4. https://doi.org/10.1038/s41746-020-0280-0
(15) Sears A, Jacko JA. Human-computer interaction fundamentals. CRC press; 2009.
(16) Vosoughi S, Roy D, Aral S. The spread of true and false news online. Science. 2018;359(6380):1146-51. https://doi.org/10.1126/science.aap9559
(17) Ni L, Lu C, Liu N, Liu J. Mandy: Towards a smart primary care chatbot application. In: International symposium on knowledge and systems sciences. Springer. 2017. p. 38-52.
(18) Srivastava S, Kalra S, Prabhakar T. Contextual Reactive Pattern on Chatbot building Platforms.In Proceedings of the European Conference on Pattern Languages of Programs (EuroPLoP '20). Association for Computing Machinery. 2020. p.1–8. https://doi.org/10.1145/3424771.3424815
(19) Rodsawang C, Thongkliang P, Intawong T, Sonong A, Thitiwatthana Y, Chottanapund S. Designing a competent chatbot to counter the COVID-19 pandemic and empower risk communication in an emergency response system. OSIR Journal. 2020 Jun 30;13(2):71-77.
(20) Jiao A. An Intelligent Chatbot System Based on Entity Extraction Using RASA NLU and Neural Network. JPhCS. 2020;1487(1):012014. https://doi.org/10.1088/1742-6596/1487/1/012014
(21) Ouerhani N, Maalel A, Ghézela HB. SPeCECA: a smart pervasive chatbot for emergency case assistance based on cloud computing. Clust Comput. 2020;23(4):2471-82. https://doi.org/10.1007/s10586-019-03020-1
(22) Judson TJ, Odisho AY, Young JJ, Bigazzi O, Steuer D, Gonzales R, et al. Implementation of a digital chatbot to screen health system employees during the COVID-19 pandemic. J Am Med Inform Assoc. 2020;27(9):1450-5.https://doi.org/10.1093/jamia/ocaa130
(23) Yan M, Castro P, Cheng P, Ishakian V. Building a chatbot with serverless computing. In: Proceedings of the 1st International Workshop on Mashups of Things and APIs. 2016. p. 1-4.https://doi.org/10.1145/3007203.3007217
(24) Chittò P, Baez M, Daniel F, Benatallah B. Automatic generation of chatbots for conversational web browsing. In: International Conference on Conceptual Modeling. Springer. 2020. p. 239-49.http://dx.doi.org/10.1007/978-3-030-62522-1_17
(25) Baez M, Daniel F, Casati F, Benatallah B. Chatbot integration in few patterns. IEEE Internet Comput. 2020. https://doi.org/10.1109/MIC.2020.3024605
(26) Esri Colombia [Internet]. Esri Colombia. [citado 10 de febrero de 2021]. Disponible en: https://esri.co/covid-19/
(27) Dangermond J. Geodesign and GIS–designing our futures. Proc Digit Landsc Archit. 2010;502-14.
(28) Dangermond J, De Vito C, Pesaresi C. Using GIS in the Time of the COVID-19 Crisis, casting a glance at the future. A joint discussion. J-Read-J Res Didact Geogr. 2020;195-205. Available from: http://www.j-reading.org/index.php/geography/article/view/257.
(29) Datos Abiertos Colombia | Datos Abiertos Colombia [Internet]. la plataforma de datos abiertos del gobierno colombiano. [citado 10 de febrero de 2021]. Disponible en: https://www.datos.gov.co/
(30) CDC. Coronavirus Disease 2019 (COVID-19) [Internet]. Centers for Disease Control and Prevention. 2020 [citado 6 de mayo de 2020]. Disponible en: https://www.cdc.gov/coronavirus/2019-ncov/php/principles-contact-tracing.html
(31) CDC. espanol.cdc.gov [Internet]. Centers for Disease Control and Prevention. 2020 [citado 10 de febrero de 2021]. Disponible en: https://espanol.cdc.gov/coronavirus/2019-ncov/faq.html
(32) Coronaviruscolombia [Internet]. [citado 10 de febrero de 2021]. Disponible en: https://coronaviruscolombia.gov.co/Covid19/
(33) Dragoni N, Lanese I, Larsen ST, Mazzara M., Mustafin R., Safina L. (2018) Microservices: How To Make Your Application Scale. In: Petrenko A., Voronkov A. (eds) Perspectives of System Informatics. PSI 2017. Lecture Notes in Computer Science, vol 10742. Springer, Cham. https://doi.org/10.1007/978-3-319-74313-4_8
(34) Uysal AK, Gunal S. The impact of preprocessing on text classification. Inf Process Manag. 2014;50(1):104-12.http://dx.doi.org/10.1016/j.ipm.2013.08.006
(35) Bird S, Loper E. NLTK: The Natural Language Toolkit. In: Proceedings of the ACL Interactive Poster and Demonstration Sessions [Internet]. Barcelona, Spain: Association for Computational Linguistics; 2004. p. 214-7. Disponible en: https://www.aclweb.org/anthology/P04-3031
(36) Srinivasa-Desikan B. Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd; 2018.
(37) Plisson J, Lavrac N, Mladenic D, others. A rule-based approach to word lemmatization. In: Proceedings of IS04. 2004. p. 83-6.
(38) Thomas N. An e-business chatbot using AIML and LSA. In: 2016 International Conference on Advances in Computing, Communications, and Informatics (ICACCI). IEEE; 2016. p. 2740-2.
(39) Abdul-Kader SA, Woods J. Question answer system for online feedable newborn Chatbot. In: 2017 Intelligent Systems Conference (IntelliSys). IEEE; 2017. p. 863-9.
(40) Petrasch R. Model-based engineering for microservice architectures using Enterprise Integration Patterns for inter-service communication. In: 2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE; 2017. p. 1-4.
(41) Tharwat A. Classification assessment methods. Applied Computing and Informatics. 2021;17(1):168-192. https://doi.org/10.1016/j.aci.2018.08.003
(42) Maroengsit W, Piyakulpinyo T, Phonyiam K, Pongnumkul S, Chaovalit P, Theeramunkong T. A survey on evaluation methods for chatbots. In: Proceedings of the 2019 7th International Conference on Information and Education Technology. 2019. p. 111-9.
Accepted 2021-05-25
Published 2022-01-15
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).