Contenido principal del artículo

Autores

Esta investigación evalúa las propiedades físicas, mecánicas y termoacústicas de materiales compuestos particulados de matriz geopolimérica con incorporación de partículas orgánicas proveniente de residuos como poliestireno expandido (EP), madera (CK) y residuos de llantas (RB), en porcentajes de 2, 4 y % en volumen. Metakaolin fue usado como precursor del geopolímero producido por activación con NaOH y silicato de sodio. Los materiales fueron obtenidos a temperatura ambiente. Propiedades como densidad, porosidad, absorción, resistencia a la compresión, y medidas de conductividad térmica y propiedades acústicas fueron evaluadas en los compuestos desarrollados. Complementariamente fueron realizadas observaciones en microscopio óptico y electrónico. Los resultados mostraron que la alta alcalinidad de la matriz geopolimérica deteriora las partículas de CK. Para los materiales compuestos con incorporación de EP y RB en 4%, reportaron resistencia a la compresión de 32 y 45 MPa a 28 días, y densidades de 1853 y 1922 kg/m3 respectivamente, lo cual representa una reducción de 6,08% y 2,58% en comparación a la matriz de referencia. La conductividad térmica de los compuestos con 4% de EP y RB fue de 0,314 y 0,344 W/m.K, y el coeficiente de absorción acústica a frecuencia de 500 Hz fue de 0,7 y 0,5 respectivamente. Las propiedades de desempeño evaluadas mostraron la facilidad de usar 4% de EP y RB para la manufactura de materiales compuestos para aplicaciones como paneles de aislamiento térmico y acústico.

1.
Villaquirán-Caicedo MA, Perea VN, Ruiz JE, de Gutiérrez RM. Propiedades mecánicas, físicas y termoacústicas de geopolímeros compuestos aligerados. inycomp [Internet]. 30 de octubre de 2021 [citado 29 de marzo de 2024];24(1). Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/10985

(1) Karlsson KF, TomasÅström B. Manufacturing and applications of structural sandwich components. Compos Part A Appl Sci Manuf. 1997;28(2):97–111. https://doi.org/10.1016/S1359-835X(96)00098-X

(2) Yang Y, Li B, Chen Z, Sui N, Chen Z, Saeed M-U, et al. Acoustic properties of glass fiber assembly-filled honeycomb sandwich panels. Compos Part B Eng. 2016;96:281-286. https://doi.org/10.1016/j.compositesb.2016.04.046

(3) Wang L, Chen SS, Tsang DCW, Poon CS, Shih K. Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Constr Build Mater. 2016; 125:316–25. https://doi.org/10.1016/j.conbuildmat.2016.08.053

(4) Cintra CL, Paiva AE, Dos Santos WN, Baldo JB. Masonry light weight mortars containing vermiculite and rubber crumbs of recycled tires. InterCeram Int Ceram Rev. 2014;63(1–2):40–3. https://doi.org/10.1007/BF03401034.

(5) Videla C, López M. Efecto de la resistencia intrínseca del árido ligero en la resistencia a compresión y rigidez del hormigón ligero. Mater Constr. 2002;2002(265):23–37. https://doi.org/10.3989/mc.2002.v52.i265.342.

(6) Asdrubali F. The role of Life Cycle Assessment (LCA) in the design of sustainable buildings: Thermal and sound insulating materials. Edinburg, Scortland: 8th Eur Conf Noise Control 2009, EURONOISE 2009 - Proc Inst Acoust. 2009;31(PART 3).

(7) Duan P, Song L, Yan C, Ren D, Li Z. Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram Int. 2017;43:5115–20. https://doi.org/10.1016/j.ceramint.2017.01.025

(8) Colangelo F, Roviello G, Ricciotti L, Ferrándiz-Mas V, Messina F, Ferone C, et al. Mechanical and thermal properties of lightweight geopolymer composites. Cem Concr Compos. 2018;86:266–72. https://doi.org/10.1016/j.cemconcomp.2017.11.016

(9) Dissanayake DMKW, Jayasinghe C, Jayasinghe MTR. A comparative embodied energy analysis of a house with recycled expanded polystyrene (EPS) based foam concrete wall panels. Energy Build.2017;135:85–94. https://doi.org/10.1016/j.enbuild.2016.11.044.

(10) Pedroso M, Brito J De, Silvestre JD. Characterization of eco-efficient acoustic insulation materials (traditional and innovative). Constr Build Mater. 2017;140:221–8. http://dx.doi.org/10.1016/j.conbuildmat.2017.02.132

(11) Laukaitis A, Žurauskas R, Kerien J. The effect of foam polystyrene granules on cement composite properties. Cem Concr Compos. 2005;27(1):41–7. https://doi.org/10.1016/j.cemconcomp.2003.09.004

(12) AI A group. Construction - Acoustic Insulations. AMORIM. Cork Composites. 2019. Available from:https://amorimcorkcomposites.com/en/search/?q=acoustic%20insulation&tag=acoustic%20insulation

(13) Corredor-Bedoya AC, Zoppi RA, Serpa Al. Composites of scrap tire rubber particles and adhesive mortar – Noise insulation potential. Cem Concr Compos. 2017;82:45–66. https://doi.org/10.1016/j.cemconcomp.2017.05.007

(14) Herrera Góngora M. Propiedades mecánicas, térmicas y acústicas de un mortero aligerado con partículas de poliestireno expandido (EPS) de reciclaje para recubrimientos en muros y techos [Tesis de Maestría]. Centro de Investigación Científica de Yucatán, A.C. Centro de Investigación Científica de Yucatán, A.C.; 2015. Available from: https://cicy.repositorioinstitucional.mx/jspui/handle/1003/413

(15) Medio Ambiente. Para las llantas usadas sí hay una vida después de la muerte. Dinero Magazin. Revista Dinero [Internet]. Bogotá. Septiembre 9 de 2017. Available from: https://www.dinero.com/pais/articulo/reciclaje-de-llantas-usadas-en-colombia/249688

(16) Agudelo A, Vega A., Rodríguez, JDJ, Varela JS, Benavides A. Re-diseño de un proceso que permita el reciclaje del poliestireno expandido EPS. Cali: Pontificia Universidad Javeriana; 2017.

(17) Senado de la república de Colombia. Proyecto de Ley No. 050 de 2019 de Senado. Congreso Republica de Colombia 2019 p. 75–84.

(18) Villaquirán-Caicedo MA., Mejía de Gutiérrez R. Synthesis of ceramic materials from ecofriendly geopolymer precursors. Mater Lett. 2018;230:300-304. https://doi.org/10.1016/j.matlet.2018.07.128

(19) Robayo RA, Mejía-Arcila J, Mejía de Gutiérrez R., Martínez E. Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Constr Build Mater. 2018;176:103–11. https://doi.org/10.1016/j.conbuildmat.2018.05.017

(20) Valencia Saavedra WG, Mejía de Gutiérrez R. Performance of geopolymer concrete composed of fly ash after exposure to elevated temperatures. Constr Build Mater. 2017;154:229–35. http://dx.doi.org/10.1016/j.conbuildmat.2017.07.208

(21) Robayo RA, Mejía-Arcila JM, Mejía de Gutiérrez R. Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials. J Clean Prod. 2017;166:242–52. https://doi.org/10.1016/j.jclepro.2017.07.243

(22) Duxson P, Provis JL, Lukey GC, Van Deventer JSJ. The role of inorganic polymer technology in the development of ‘green concrete.’ Cem Concr Res. 2007;37(12):1590–7. https://doi.org/10.1016/j.cemconres.2007.08.018

(23) Petrillo A, Cioffi R, Ferone C, Colangelo F, Borrelli C. Eco-sustainable Geopolymer Concrete Blocks Production Process. Agric Agric Sci Procedia. 2016;8:408–18. https://doi.org/10.1016/j.aaspro.2016.02.037.

(24) Villaquirán-Caicedo MA, Mejía-de Gutiérrez R. Mechanical and microstructural analysis of geopolymer composites based on metakaolin and recycled silica. J Am Ceram Soc. 2019;102:3653–3662. https://doi.org/10.1111/jace.16208

(25) Abdel Kader MM, Abdel-wehab SM, Helal MA, Hassan HH. Evaluation of thermal insulation and mechanical properties of waste rubber/natural rubber composite. HBRC J. 2012;8(1):69–74. https://doi.org/10.1016/j.hbrcj.2011.11.001

(26) Zhang Z, Provis JL, Reid A, Wang H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr Build Mater. 2014;56:113–27. https://doi.org/10.1016/j.conbuildmat.2014.01.081

(27) Bell JL, Kriven WM. Chapter 10 - Preparation of Ceramic Foams from Metakaolin‐Based Geopolymer Gels. In: Lin H, Koumoto K, Kriven WM, Garcia IER, Reimanis IE, Norton DP, editors. Vol. 29, Developments in Strategic Materials: Ceramic Engineering and Science Proceedings. 2009:96-111. https://doi.org/10.1002/9780470456200.ch10.

(28) Natali Murri A, Medri V, Papa E, Laghi L, Mingazzini C, Landi E. Porous Geopolymer Insulating Core from a Metakaolin/Biomass Ash Composite. Environments. 2017; 4(4):86. https://doi.org/10.3390/environments4040086

(29) Kamseu E, Nait-Ali B, Bignozzi MC, Leonelli C, Rossignol S, Smith DS. Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J Eur Ceram Soc. 2012;32(8):1593–603. https://doi.org/10.1016/j.jeurceramsoc.2011.12.030

(30) Yang L, Shili Z, Shuhua M, Chunli L, Xiaohui W. Preparation of sintered foamed ceramics derived entirely from coal fly ash. Constr Build Mater. 2018;163:529–38. https://doi.org/10.1016/j.conbuildmat.2017.12.102

(31) Medri V, Papa E, Mazzocchi M, Laghi L, Morganti M, Francisconi J, et al. Production and characterization of lightweight vermiculite/geopolymer-based panels. Mater Des. 2015;85:266–74. https://doi.org/10.1016/j.matdes.2015.06.145

(32) Sarmin SN. Lightweight geopolymer wood composite synthesized from alkali-activated fly ash and metakaolin. Jurnal Teknologi. 2016;78(11):49-55. https://doi.org/10.11113/.v78.8734

(33) Berzins A, Morozovs A, Gross U, Iejavs J. Mechanical properties of wood-geopolymer composite. Eng Rural Dev. 2017;16:1167–73. https://doi.org/10.22616/ERDev2017.16.N251

(34) Çetinkaya S, Kurt H, Kütük N. Lightweight geopolymer made of pumice with various aluminum powder ratios. Acta Phys Pol A. 2017;132(3):544–5. https://doi.org/10.12693/APhysPolA.132.544

(35) Kakali G, Kioupis D, Skaropoulou A, Tsivilis S. Lightweight geopolymer composites as structural elements with improved insulation capacity. MATEC Web Conf. 2018;149:8–11.

https://doi.org/10.1051/matecconf/201814901042

(36) Singh B, Gupta M, Chauhan M, Bhattacharyya SK. Lightweight Geopolymer Concrete with EPS Beads. MATEC Web Conf. Central Building Research Institute, India; 2013. https://doi.org/10.1051/matecconf/201814901042

(37) Villaquirán-Caicedo MA, Rodríguez ED, Mejía de Gutiérrez R. Evaluación microestructural de geopolímeros basados en metacaolin y fuentes alternativas de sílice expuestos a temperaturas altas. Ing Investig y Tecnol. 2015;16(1):113–22.

(38) Vizcayno C, de Gutiérrez RM, Castello R, Rodríguez ED, Guerrero CE. Pozzolan obtained by mechanochemical and thermal treatments of kaolin. Appl Clay Sci. 2010;49(4):405–13. https://doi.org/10.1016/j.clay.2009.09.008

(39) Yanguatin H, Tobón J, Ramírez J. Pozzolanic reactivity of kaolin clays, a review. Rev Ing Constr. 2017;32(2):13–24.

(40) Rodríguez ED, Gutiérrez RM de, Bernal SA, Gordillo M. Efecto de los módulos SiO2/Al2O3 y Na2O/SiO2 en las propiedades de sistemas geopoliméricos basados en un metacaolín. Rev Fac Ing Univ Antioquia. 2009;(49):30–41. https://revistas.udea.edu.co/index.php/ingenieria/article/view/15884.

(41) Villaquirán-Caicedo MA, Mejía de Gutierrez R, Sulekar S, Davis C, Nino J. Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources. Appl Clay Sci. 2015;118:276–82. https://doi.org/10.1016/j.clay.2015.10.005

(42) Villaquirán-Caicedo MA. Studying different silica sources for preparation of alternative waterglass used in preparation of binary geopolymer binders from metakaolin/boiler slag. Constr Build Mater. 2019;227:116621. https://doi.org/10.1016/j.conbuildmat.2019.08.002

(43) Bernal SA, Rodríguez ED, Mejía de Gutierrez R, Provis JL, Delvasto S. Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash. Waste and Biomass Valorization. 2011;3(1):99–108. https://doi.org/10.1007/s12649-011-9093-3

(44) Król M, Minkiewicz J, Mozgawa W. IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. J Mol Struct. 2016;1126:200–6. https://doi.org/10.1016/j.molstruc.2016.02.027

(45) Tchakouté HK, Rüscher CH, Kong S, Kamseu E, Leonelli C. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Constr Build Mater. 2016 Jul;114:276–89. https://doi.org/10.1016/j.conbuildmat.2016.03.184

(46) Arellano-Aguilar R, Burciaga-Díaz O, Gorokhovsky A, Escalante-García JI. Geopolymer mortars based on a low grade metakaolin: Effects of the chemical composition, temperature and aggregate:binder ratio. Constr Build Mater. 2014;50:642–8. https://doi.org/10.1016/j.conbuildmat.2013.10.023

(47) Hajimohammadi A, Provis JL, Van Deventer JSJ. The effect of silica availability on the mechanism of geopolymerisation. Cem Concr Res. 2011;41(3):210–6. https://doi.org/10.1016/j.cemconres.2011.02.001

(48) Tong KT, Vinai R, Soutsos MN. Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders. J Clean Prod. 2018;201:272–86. https://doi.org/10.1016/j.jclepro.2018.08.025

(49) Lecomte I, Henrist C, Liégeois M, Maseri F, Rulmont A, Cloots R. (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J Eur Ceram Soc. 2006;26(16):3789–97. https://doi.org/10.1016/j.jeurceramsoc.2005.12.021

(50) Nmiri A, Duc M, Hamdi N, Yazoghli-Marzouk O, Srasra E. Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers. Int J Miner Metall Mater. 2019;26(5):555–64. https://doi.org/10.1016/j.jeurceramsoc.2005.12.021

(51) Villaquirán-Caicedo MA, Mejía de Gutiérrez R. Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash. DYNA. 2015;82(194):104–10. http://dx.doi.org/10.15446/dyna.v82n194.46352

(52) Onori R. Alkaline activation of incinerator bottom ash for use in structural applications. [Thesis PhD]. University of Rome XIII PhD Course in Environmental Engineering; 2011. Available in: https://gitisa.it/wp-content/uploads/tesi/2012/12-Tesi_Roberta_Onori.pdf

(53) Panagiotopoulou C, Kontori E, Perraki T, Kakali G. Dissolution of aluminosilicate minerals and by-products in alkaline media. J Mater Sci. 2006;42(9):2967–73. https://doi.org/10.1007/s10853-006-0531-8

(54) Xu Y, Jiang L, Xu J, Li Y. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. Constr Build Mater. 2012;27(1):32–8. https://doi.org/10.1016/j.conbuildmat.2011.08.030

(55) Brás A, Leal M, Faria P. Cement-cork mortars for thermal bridges correction. Comparison with cement-EPS mortars performance. Constr Build Mater. 2013;49:315–27. https://doi.org/10.1016/j.conbuildmat.2013.08.006

(56) Turatsinze A, Bonnet S, Granju JL. Mechanical characterisation of cement-based mortar incorporating rubber aggregates from recycled worn tyres. Build Environ. 2005;40(2):221–6. https://doi.org/10.1016/j.buildenv.2004.05.012

(57) Medina NF, Medina DF, Hernández-Olivares F, Navacerrada MA. Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling. Constr Build Mater. 2017;144:563–73. https://doi.org/10.1016/j.conbuildmat.2017.03.196

(58) Raghavan D, Huynh H, Ferraris CF. Workability, mechanical properties, and chemical stability of a recycled tyre rubber-filled cementitious composite. J Mater Sci. 1998;33(7):1745–52. https://doi.org/10.1023/A:1004372414475

(59) Moreira A, António J, Tadeu A. Lightweight screed containing cork granules: Mechanical and hygrothermal characterization. Cem Concr Compos. 2014;49:1–8. https://doi.org/10.1016/j.cemconcomp.2014.01.012

(60) Sayadi AA, Tapia J V., Neitzert TR, Clifton GC. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr Build Mater. 2016;112:716–24. https://doi.org/10.1016/j.cemconcomp.2014.01.012

(61) Gong J, Duan Z, Sun K, Xiao M. Waterproof properties of thermal insulation mortar containing vitrified microsphere. Constr Build Mater. 2016;123:274–80. https://doi.org/10.1016/j.cemconcomp.2014.01.012

(62) Tamut T. Partial Replacement of Coarse Aggregates By Expanded Polystyrene Beads in Concrete. Int J Res Eng Technol. 2015;03(2):238–41. https://doi.org/10.15623/ijret.2014.0302040

(63) Navarro F., Partal P, Martı́nez-Boza F, Valencia C, Gallegos C. Rheological characteristics of ground tire rubber-modified bitumens. Chem Eng J. 2002;89(1–3):53–61. https://doi.org/10.1016/S1385-8947(02)00023-2

(64) Hall MR, Najim KB, Hopfe CJ. Transient thermal behaviour of crumb rubber-modified concrete and implications for thermal response and energy efficiency in buildings. Appl Therm Eng. 2012;33–34:77–85. https://doi.org/10.1016/j.applthermaleng.2011.09.015

(65) Azimi EA, Mustafa M, Bakri A, Ming LY, Yong HC, Hussin K, et al. Processing and Properties of Geopolymers as Thermal Insulating Materials: A Review. Rev Adavanced Mater Sci. 2016;44:273–85. https://doi.org/10.1016/j.applthermaleng.2011.09.015

(66) Moretti E, Belloni E, Agosti F. Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization. Appl Energy. 2016;169:421–32.https://doi.org/10.1016/j.apenergy.2016.02.048.

(67) Najib NN, Ariff ZM, Bakar AA, Sipaut CS. Correlation between the acoustic and dynamic mechanical properties of natural rubber foam: Effect of foaming temperature. Mater Des. 2011;32(2):505–11. https://doi.org/10.1016/j.matdes.2010.08.030

(68) Hansen CH. Fundamentals of Acoustics. University of Adelaide. 2019.

(69) Holmes N, Browne A, Montague C. Acoustic Properties of Concrete Panels with Crumb Rubber as a Fine Aggregate Replacement. Constr Build Mater. 2014;73:195–204. https://doi.org/10.1016/j.conbuildmat.2014.09.107

(70) Arenas C, Luna-Galiano Y, Leiva C, Vilches LF, Arroyo F, Villegas R, et al. Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers. Constr Build Mater. 2017;134:433–42. https://doi.org/10.1016/j.conbuildmat.2016.12.119

(71) Acoustic C. Commercial Acoustic. 2019. Available from: https://commercial-acoustics.com/product/acoustic-absorption-panel/

(72) Tiwari V, Shukla A, Bose A. Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl Acoust. 2004;65(3):263–75. https://doi.org/10.1016/j.apacoust.2003.09.002