Main Article Content

Authors

This research evaluates the physical and mechanical properties of particulate composites, produced from geopolymer paste with the incorporation of different organic type wastes as expanded polystyrene (EP), corkwood (CK), tire rubber (RB); in percentages by volume of 2, 4, and 6%. Metakaolin was used as a precursor of the geopolymer produced by alkali activation from NaOH and sodium silicate. The geopolymer composites were cured at room temperature. Properties as density, porosity, absorption, compressive strength, thermal conductivity, and acoustic behavior were evaluated. As complementary techniques, light and scanning electron microscopy were used. It was observed that the high alkalinity of the geopolymer mixture causes deterioration of the CK particles. Composites with the incorporation of 4% of the EP and RB particles reported compressive strength of 32 and 45 MPa at 28 days, and apparent density of 1853 and 1922 kg/m3, respectively, which represents a reduction of 6.08% and 2.58% in comparison to the GP reference. The thermal conductivity for composites with 4% of EP and RB was 0.316 and 0.344 W/m.K and the sound absorption coefficient was evaluated at frequencies of 500 Hz, 0.70, and 0.50 respectively. The evaluated performance properties show the feasibility of using 4% of EP and RB for the manufacture of geopolymer composites for applications in thermal and sound insulating panels.

1.
Villaquirán-Caicedo MA, Perea VN, Ruiz JE, de Gutiérrez RM. Mechanical, physical and thermoacoustic properties of lightweight composite geopolymers. inycomp [Internet]. 2022 Jan. 15 [cited 2024 Dec. 21];24(1). Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/10985

(1) Karlsson KF, TomasÅström B. Manufacturing and applications of structural sandwich components. Compos Part A Appl Sci Manuf. 1997;28(2):97–111. https://doi.org/10.1016/S1359-835X(96)00098-X

(2) Yang Y, Li B, Chen Z, Sui N, Chen Z, Saeed M-U, et al. Acoustic properties of glass fiber assembly-filled honeycomb sandwich panels. Compos Part B Eng. 2016;96:281-286. https://doi.org/10.1016/j.compositesb.2016.04.046

(3) Wang L, Chen SS, Tsang DCW, Poon CS, Shih K. Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Constr Build Mater. 2016; 125:316–25. https://doi.org/10.1016/j.conbuildmat.2016.08.053

(4) Cintra CL, Paiva AE, Dos Santos WN, Baldo JB. Masonry light weight mortars containing vermiculite and rubber crumbs of recycled tires. InterCeram Int Ceram Rev. 2014;63(1–2):40–3. https://doi.org/10.1007/BF03401034.

(5) Videla C, López M. Efecto de la resistencia intrínseca del árido ligero en la resistencia a compresión y rigidez del hormigón ligero. Mater Constr. 2002;2002(265):23–37. https://doi.org/10.3989/mc.2002.v52.i265.342.

(6) Asdrubali F. The role of Life Cycle Assessment (LCA) in the design of sustainable buildings: Thermal and sound insulating materials. Edinburg, Scortland: 8th Eur Conf Noise Control 2009, EURONOISE 2009 - Proc Inst Acoust. 2009;31(PART 3).

(7) Duan P, Song L, Yan C, Ren D, Li Z. Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram Int. 2017;43:5115–20. https://doi.org/10.1016/j.ceramint.2017.01.025

(8) Colangelo F, Roviello G, Ricciotti L, Ferrándiz-Mas V, Messina F, Ferone C, et al. Mechanical and thermal properties of lightweight geopolymer composites. Cem Concr Compos. 2018;86:266–72. https://doi.org/10.1016/j.cemconcomp.2017.11.016

(9) Dissanayake DMKW, Jayasinghe C, Jayasinghe MTR. A comparative embodied energy analysis of a house with recycled expanded polystyrene (EPS) based foam concrete wall panels. Energy Build.2017;135:85–94. https://doi.org/10.1016/j.enbuild.2016.11.044.

(10) Pedroso M, Brito J De, Silvestre JD. Characterization of eco-efficient acoustic insulation materials (traditional and innovative). Constr Build Mater. 2017;140:221–8. http://dx.doi.org/10.1016/j.conbuildmat.2017.02.132

(11) Laukaitis A, Žurauskas R, Kerien J. The effect of foam polystyrene granules on cement composite properties. Cem Concr Compos. 2005;27(1):41–7. https://doi.org/10.1016/j.cemconcomp.2003.09.004

(12) AI A group. Construction - Acoustic Insulations. AMORIM. Cork Composites. 2019. Available from:https://amorimcorkcomposites.com/en/search/?q=acoustic%20insulation&tag=acoustic%20insulation

(13) Corredor-Bedoya AC, Zoppi RA, Serpa Al. Composites of scrap tire rubber particles and adhesive mortar – Noise insulation potential. Cem Concr Compos. 2017;82:45–66. https://doi.org/10.1016/j.cemconcomp.2017.05.007

(14) Herrera Góngora M. Propiedades mecánicas, térmicas y acústicas de un mortero aligerado con partículas de poliestireno expandido (EPS) de reciclaje para recubrimientos en muros y techos [Tesis de Maestría]. Centro de Investigación Científica de Yucatán, A.C. Centro de Investigación Científica de Yucatán, A.C.; 2015. Available from: https://cicy.repositorioinstitucional.mx/jspui/handle/1003/413

(15) Medio Ambiente. Para las llantas usadas sí hay una vida después de la muerte. Dinero Magazin. Revista Dinero [Internet]. Bogotá. Septiembre 9 de 2017. Available from: https://www.dinero.com/pais/articulo/reciclaje-de-llantas-usadas-en-colombia/249688

(16) Agudelo A, Vega A., Rodríguez, JDJ, Varela JS, Benavides A. Re-diseño de un proceso que permita el reciclaje del poliestireno expandido EPS. Cali: Pontificia Universidad Javeriana; 2017.

(17) Senado de la república de Colombia. Proyecto de Ley No. 050 de 2019 de Senado. Congreso Republica de Colombia 2019 p. 75–84.

(18) Villaquirán-Caicedo MA., Mejía de Gutiérrez R. Synthesis of ceramic materials from ecofriendly geopolymer precursors. Mater Lett. 2018;230:300-304. https://doi.org/10.1016/j.matlet.2018.07.128

(19) Robayo RA, Mejía-Arcila J, Mejía de Gutiérrez R., Martínez E. Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Constr Build Mater. 2018;176:103–11. https://doi.org/10.1016/j.conbuildmat.2018.05.017

(20) Valencia Saavedra WG, Mejía de Gutiérrez R. Performance of geopolymer concrete composed of fly ash after exposure to elevated temperatures. Constr Build Mater. 2017;154:229–35. http://dx.doi.org/10.1016/j.conbuildmat.2017.07.208

(21) Robayo RA, Mejía-Arcila JM, Mejía de Gutiérrez R. Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials. J Clean Prod. 2017;166:242–52. https://doi.org/10.1016/j.jclepro.2017.07.243

(22) Duxson P, Provis JL, Lukey GC, Van Deventer JSJ. The role of inorganic polymer technology in the development of ‘green concrete.’ Cem Concr Res. 2007;37(12):1590–7. https://doi.org/10.1016/j.cemconres.2007.08.018

(23) Petrillo A, Cioffi R, Ferone C, Colangelo F, Borrelli C. Eco-sustainable Geopolymer Concrete Blocks Production Process. Agric Agric Sci Procedia. 2016;8:408–18. https://doi.org/10.1016/j.aaspro.2016.02.037.

(24) Villaquirán-Caicedo MA, Mejía-de Gutiérrez R. Mechanical and microstructural analysis of geopolymer composites based on metakaolin and recycled silica. J Am Ceram Soc. 2019;102:3653–3662. https://doi.org/10.1111/jace.16208

(25) Abdel Kader MM, Abdel-wehab SM, Helal MA, Hassan HH. Evaluation of thermal insulation and mechanical properties of waste rubber/natural rubber composite. HBRC J. 2012;8(1):69–74. https://doi.org/10.1016/j.hbrcj.2011.11.001

(26) Zhang Z, Provis JL, Reid A, Wang H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr Build Mater. 2014;56:113–27. https://doi.org/10.1016/j.conbuildmat.2014.01.081

(27) Bell JL, Kriven WM. Chapter 10 - Preparation of Ceramic Foams from Metakaolin‐Based Geopolymer Gels. In: Lin H, Koumoto K, Kriven WM, Garcia IER, Reimanis IE, Norton DP, editors. Vol. 29, Developments in Strategic Materials: Ceramic Engineering and Science Proceedings. 2009:96-111. https://doi.org/10.1002/9780470456200.ch10.

(28) Natali Murri A, Medri V, Papa E, Laghi L, Mingazzini C, Landi E. Porous Geopolymer Insulating Core from a Metakaolin/Biomass Ash Composite. Environments. 2017; 4(4):86. https://doi.org/10.3390/environments4040086

(29) Kamseu E, Nait-Ali B, Bignozzi MC, Leonelli C, Rossignol S, Smith DS. Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J Eur Ceram Soc. 2012;32(8):1593–603. https://doi.org/10.1016/j.jeurceramsoc.2011.12.030

(30) Yang L, Shili Z, Shuhua M, Chunli L, Xiaohui W. Preparation of sintered foamed ceramics derived entirely from coal fly ash. Constr Build Mater. 2018;163:529–38. https://doi.org/10.1016/j.conbuildmat.2017.12.102

(31) Medri V, Papa E, Mazzocchi M, Laghi L, Morganti M, Francisconi J, et al. Production and characterization of lightweight vermiculite/geopolymer-based panels. Mater Des. 2015;85:266–74. https://doi.org/10.1016/j.matdes.2015.06.145

(32) Sarmin SN. Lightweight geopolymer wood composite synthesized from alkali-activated fly ash and metakaolin. Jurnal Teknologi. 2016;78(11):49-55. https://doi.org/10.11113/.v78.8734

(33) Berzins A, Morozovs A, Gross U, Iejavs J. Mechanical properties of wood-geopolymer composite. Eng Rural Dev. 2017;16:1167–73. https://doi.org/10.22616/ERDev2017.16.N251

(34) Çetinkaya S, Kurt H, Kütük N. Lightweight geopolymer made of pumice with various aluminum powder ratios. Acta Phys Pol A. 2017;132(3):544–5. https://doi.org/10.12693/APhysPolA.132.544

(35) Kakali G, Kioupis D, Skaropoulou A, Tsivilis S. Lightweight geopolymer composites as structural elements with improved insulation capacity. MATEC Web Conf. 2018;149:8–11.

https://doi.org/10.1051/matecconf/201814901042

(36) Singh B, Gupta M, Chauhan M, Bhattacharyya SK. Lightweight Geopolymer Concrete with EPS Beads. MATEC Web Conf. Central Building Research Institute, India; 2013. https://doi.org/10.1051/matecconf/201814901042

(37) Villaquirán-Caicedo MA, Rodríguez ED, Mejía de Gutiérrez R. Evaluación microestructural de geopolímeros basados en metacaolin y fuentes alternativas de sílice expuestos a temperaturas altas. Ing Investig y Tecnol. 2015;16(1):113–22.

(38) Vizcayno C, de Gutiérrez RM, Castello R, Rodríguez ED, Guerrero CE. Pozzolan obtained by mechanochemical and thermal treatments of kaolin. Appl Clay Sci. 2010;49(4):405–13. https://doi.org/10.1016/j.clay.2009.09.008

(39) Yanguatin H, Tobón J, Ramírez J. Pozzolanic reactivity of kaolin clays, a review. Rev Ing Constr. 2017;32(2):13–24.

(40) Rodríguez ED, Gutiérrez RM de, Bernal SA, Gordillo M. Efecto de los módulos SiO2/Al2O3 y Na2O/SiO2 en las propiedades de sistemas geopoliméricos basados en un metacaolín. Rev Fac Ing Univ Antioquia. 2009;(49):30–41. https://revistas.udea.edu.co/index.php/ingenieria/article/view/15884.

(41) Villaquirán-Caicedo MA, Mejía de Gutierrez R, Sulekar S, Davis C, Nino J. Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources. Appl Clay Sci. 2015;118:276–82. https://doi.org/10.1016/j.clay.2015.10.005

(42) Villaquirán-Caicedo MA. Studying different silica sources for preparation of alternative waterglass used in preparation of binary geopolymer binders from metakaolin/boiler slag. Constr Build Mater. 2019;227:116621. https://doi.org/10.1016/j.conbuildmat.2019.08.002

(43) Bernal SA, Rodríguez ED, Mejía de Gutierrez R, Provis JL, Delvasto S. Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash. Waste and Biomass Valorization. 2011;3(1):99–108. https://doi.org/10.1007/s12649-011-9093-3

(44) Król M, Minkiewicz J, Mozgawa W. IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. J Mol Struct. 2016;1126:200–6. https://doi.org/10.1016/j.molstruc.2016.02.027

(45) Tchakouté HK, Rüscher CH, Kong S, Kamseu E, Leonelli C. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Constr Build Mater. 2016 Jul;114:276–89. https://doi.org/10.1016/j.conbuildmat.2016.03.184

(46) Arellano-Aguilar R, Burciaga-Díaz O, Gorokhovsky A, Escalante-García JI. Geopolymer mortars based on a low grade metakaolin: Effects of the chemical composition, temperature and aggregate:binder ratio. Constr Build Mater. 2014;50:642–8. https://doi.org/10.1016/j.conbuildmat.2013.10.023

(47) Hajimohammadi A, Provis JL, Van Deventer JSJ. The effect of silica availability on the mechanism of geopolymerisation. Cem Concr Res. 2011;41(3):210–6. https://doi.org/10.1016/j.cemconres.2011.02.001

(48) Tong KT, Vinai R, Soutsos MN. Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders. J Clean Prod. 2018;201:272–86. https://doi.org/10.1016/j.jclepro.2018.08.025

(49) Lecomte I, Henrist C, Liégeois M, Maseri F, Rulmont A, Cloots R. (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J Eur Ceram Soc. 2006;26(16):3789–97. https://doi.org/10.1016/j.jeurceramsoc.2005.12.021

(50) Nmiri A, Duc M, Hamdi N, Yazoghli-Marzouk O, Srasra E. Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers. Int J Miner Metall Mater. 2019;26(5):555–64. https://doi.org/10.1016/j.jeurceramsoc.2005.12.021

(51) Villaquirán-Caicedo MA, Mejía de Gutiérrez R. Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash. DYNA. 2015;82(194):104–10. http://dx.doi.org/10.15446/dyna.v82n194.46352

(52) Onori R. Alkaline activation of incinerator bottom ash for use in structural applications. [Thesis PhD]. University of Rome XIII PhD Course in Environmental Engineering; 2011. Available in: https://gitisa.it/wp-content/uploads/tesi/2012/12-Tesi_Roberta_Onori.pdf

(53) Panagiotopoulou C, Kontori E, Perraki T, Kakali G. Dissolution of aluminosilicate minerals and by-products in alkaline media. J Mater Sci. 2006;42(9):2967–73. https://doi.org/10.1007/s10853-006-0531-8

(54) Xu Y, Jiang L, Xu J, Li Y. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. Constr Build Mater. 2012;27(1):32–8. https://doi.org/10.1016/j.conbuildmat.2011.08.030

(55) Brás A, Leal M, Faria P. Cement-cork mortars for thermal bridges correction. Comparison with cement-EPS mortars performance. Constr Build Mater. 2013;49:315–27. https://doi.org/10.1016/j.conbuildmat.2013.08.006

(56) Turatsinze A, Bonnet S, Granju JL. Mechanical characterisation of cement-based mortar incorporating rubber aggregates from recycled worn tyres. Build Environ. 2005;40(2):221–6. https://doi.org/10.1016/j.buildenv.2004.05.012

(57) Medina NF, Medina DF, Hernández-Olivares F, Navacerrada MA. Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling. Constr Build Mater. 2017;144:563–73. https://doi.org/10.1016/j.conbuildmat.2017.03.196

(58) Raghavan D, Huynh H, Ferraris CF. Workability, mechanical properties, and chemical stability of a recycled tyre rubber-filled cementitious composite. J Mater Sci. 1998;33(7):1745–52. https://doi.org/10.1023/A:1004372414475

(59) Moreira A, António J, Tadeu A. Lightweight screed containing cork granules: Mechanical and hygrothermal characterization. Cem Concr Compos. 2014;49:1–8. https://doi.org/10.1016/j.cemconcomp.2014.01.012

(60) Sayadi AA, Tapia J V., Neitzert TR, Clifton GC. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr Build Mater. 2016;112:716–24. https://doi.org/10.1016/j.cemconcomp.2014.01.012

(61) Gong J, Duan Z, Sun K, Xiao M. Waterproof properties of thermal insulation mortar containing vitrified microsphere. Constr Build Mater. 2016;123:274–80. https://doi.org/10.1016/j.cemconcomp.2014.01.012

(62) Tamut T. Partial Replacement of Coarse Aggregates By Expanded Polystyrene Beads in Concrete. Int J Res Eng Technol. 2015;03(2):238–41. https://doi.org/10.15623/ijret.2014.0302040

(63) Navarro F., Partal P, Martı́nez-Boza F, Valencia C, Gallegos C. Rheological characteristics of ground tire rubber-modified bitumens. Chem Eng J. 2002;89(1–3):53–61. https://doi.org/10.1016/S1385-8947(02)00023-2

(64) Hall MR, Najim KB, Hopfe CJ. Transient thermal behaviour of crumb rubber-modified concrete and implications for thermal response and energy efficiency in buildings. Appl Therm Eng. 2012;33–34:77–85. https://doi.org/10.1016/j.applthermaleng.2011.09.015

(65) Azimi EA, Mustafa M, Bakri A, Ming LY, Yong HC, Hussin K, et al. Processing and Properties of Geopolymers as Thermal Insulating Materials: A Review. Rev Adavanced Mater Sci. 2016;44:273–85. https://doi.org/10.1016/j.applthermaleng.2011.09.015

(66) Moretti E, Belloni E, Agosti F. Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization. Appl Energy. 2016;169:421–32.https://doi.org/10.1016/j.apenergy.2016.02.048.

(67) Najib NN, Ariff ZM, Bakar AA, Sipaut CS. Correlation between the acoustic and dynamic mechanical properties of natural rubber foam: Effect of foaming temperature. Mater Des. 2011;32(2):505–11. https://doi.org/10.1016/j.matdes.2010.08.030

(68) Hansen CH. Fundamentals of Acoustics. University of Adelaide. 2019.

(69) Holmes N, Browne A, Montague C. Acoustic Properties of Concrete Panels with Crumb Rubber as a Fine Aggregate Replacement. Constr Build Mater. 2014;73:195–204. https://doi.org/10.1016/j.conbuildmat.2014.09.107

(70) Arenas C, Luna-Galiano Y, Leiva C, Vilches LF, Arroyo F, Villegas R, et al. Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers. Constr Build Mater. 2017;134:433–42. https://doi.org/10.1016/j.conbuildmat.2016.12.119

(71) Acoustic C. Commercial Acoustic. 2019. Available from: https://commercial-acoustics.com/product/acoustic-absorption-panel/

(72) Tiwari V, Shukla A, Bose A. Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl Acoust. 2004;65(3):263–75. https://doi.org/10.1016/j.apacoust.2003.09.002

Received 2021-02-05
Accepted 2021-05-25
Published 2022-01-15