Main Article Content

Authors

The current demand for water resources is on the rise worldwide; in addition, 70% of the water used is invested in agricultural production. Thus, many investigations are focused on applying indicators to evaluate water consumption and identifying other indicators, such as the water footprint. The purpose of this article is to estimate water consumption (L/kg) for the production of fresh fruit bunches (FFBs) at a subregional scale (Piedemonte Llanero from Colombia) as a tool that contributes to decision-making. The demand for the water footprint was estimated using the Global Standard for the Evaluation of the Water Footprint. Among the relevant results, 71% of the water used corresponded to the green water footprint, and the Piedemonte Llanero subregion has comparative advantages to other regions due to its climate, which makes it suitable for the development of this crop.

1.
Trujillo-González JM, Tovar-Hernández NA, Torres-Mora MA. Water footprint of fresh fruit bunches (FFBs) of oil palm in the Piedemonte Llanero, Colombia. inycomp [Internet]. 2022 Jan. 15 [cited 2024 Dec. 22];24(1). Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/10947

(1) Global WaterPartnership and International Network of Watershed Organizations. Manual para la Gestión Integrada de Recursos Hídricos en Cuencas. New York: Global WaterPartnership and International Network of Watershed Organizations; 2009. ISBN: 978-91-85321-78-0

(2) Zhang G, Hoekstra AY, Mathews RE. Water Footprint Assessment (WFS) for better water governance and sustainable development. Water Resources and Industry. 2013;1-2:1-6. https://doi.org/10.1016/j.wri.2013.06.004.

(3) Da Silva VDPR, De Oliveira SD, Hoekstra AY, Dantas Neto J, Campos JHB, Braga CC, et al. Water Footprint and virtual water trade of Brazil. Water. 2016; 8(11):517. https://doi.org/10.3390/w8110517.

(4) Novoa, V., Ahumada-Rudolph, R., Rojas, O., Sáez, K., de la Barrera, F., & Arumí, J. L. Understanding agricultural water footprint variability to improve water management in Chile. Science of the total environment. 2019; 670, 188-199. https://doi.org/10.1016/j.scitotenv.2019.03.127

(5) WWAP, Franek A, Koncagul E, Connor R, Hunziker D. Informe de las Naciones Unidas sobre los recursos hídricos en el mundo 2015 – Agua para un mundo sostenible Datos y cifras [Internet]. 2015. [cited 2021 ene 12]. Available from: http://www.unesco.org/new/fileadmin/MULTIMEDIA/HQ/SC/images/WWDR2015Facts_Figures_SPA_web.pdf.

(6) Fader M, Gerten D, Thammer M, Heinke J, Lotze-Campen H, Lucht W, et al. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrology and Earth System Sciences. 2011; 15(5), 1641-1660. https://doi.org/10.5194/hess-15-1641-2011.

(7) Hoekstra AY, Chapagain AK, Van Oel PR. Advancing water footprint assessment research: Challenges in monitoring progress towards Sustainable Development Goal 6. Water. 2017; 9(6): 438. https://doi.org/10.3390/w9060438.

(8) Hoekstra AY, Chapagain AK. Water footprints of nations: Water use by people as a function of their consumption pattern. In: Craswell E, Bonnell M, Bossio D, Demuth S, Van De Giesen N, editors. Integrated Assessment of Water Resources and Global Change. Springer, Dordrecht; 2006. p. 35–48. https://doi.org/10.1007/978-1-4020-5591-1_3.

(9) Arévalo D, Lozano J, Sabogal J. Estudio nacional de huella hídrica Colombia sector agrícola. Revista Internacional de sostenibilidad, tecnología y humanismo. 2011; (6):101-126. http://hdl.handle.net/2099/11915.

(10) Tovar-Hernández NA, Trujillo-González JM, Muñoz-Yáñez SI, Torres-Mora MA, Zárate E. Evaluación de la sostenibilidad de los cultivos de arroz y palma de aceite en la cuenca del río Guayuriba (Meta, Colombia), a través de la evaluación de huella hídrica. Orinoquia. 2017; 21(1):52-63.

(11) Gobin A, Kersebaum KC, Eitzinger J, Trnka M, Hlavinka P, TJ, et al. Variability in the water footprint of arable crop production across European regions. Water. 2017;9(2):93. https://doi.org/10.3390/w9020093.

(12) Vargas-Pineda OI, Trujillo-González JM, Torres-Mora MA. Supply–Demand of Water Resource of a Basin With High Anthropic Pressure: Case Study Quenane-Quenanito Basin in Colombia. Air, Soil and Water Research. 2020; (13):1-11. https://doi.org/10.1177%2F1178622120917725.

(13) Mekonnen MM, Hoekstra AY. The green, blue and grey water footprint of crops and derived crops products. The Netherlands. UNESCO-IHE Institute for Water Education. 2010.Value of Water Research Report. 2010; 47. https://research.utwente.nl/en/publications/the-green-blue-and-grey-water-footprint-of-crops-and-derived-crop-3

(14) Cáceres-Andrade SP, Urbina-Cardona JN. Ensablajes de anuros de sistemas productivos y bosques en el Piedemonte llanero, departamento del Meta Colombia. Caldasia. 2009; 31(1):175-194

(15) Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. Water footprint manual. Enschede, the Netherlands: Water footprint network. 2009.https://www.researchgate.net/profile/MesfinMekonnen/publication/228356003_Water_footprint_manual/links/02bfe50ced11c8dbef000000/Water-footprint-manual.pdf

(16) Allen RG, Pereira LS, Raes D, Smith M. Evapotranspiración del cultivo: guías para la determinación de los requerimientos de agua de los cultivos. Roma: FAO. 2006.

(17) Model 6FC80, Food and Agriculture Organization: Rome I. Food and Agiculture Organization: Rome, Italy. [Online]. Disponible en: www.fao.org/nr/water/infores_databases_cropwat.html.

(18) Instituto Geográfico Agustín Codazzi (Bogotá). Departamento Agrológico.; Colombia. Departamento Administrativo Nacional de Estadística. Estudio general de suelos y zonificación de tierras: departamento de Meta Bogotá: Instituto Geográfico Agustín Codazzi (Bogotá); 2004.

(19) Fedepalma.. La Palma de Aceite en Colombia.Federación Nacional de Cultivadores de Palma de Aceite.[Online]; 2020. Disponible en: http://web.fedepalma.org/la-palma-de-aceite-en-colombia-departamentos.

(20) Rueda-Punina VJ. Estimación de la Huella Hídrica de los cultivos de palma africana y maíz duro en la provincia de Los Ríos y caña de azúcar en la provincia del Guayas para la producción de biocombustibles. Tesis de grado. Escuela Politécnica Nacional. 2017. https://bibdigital.epn.edu.ec/handle/15000/17440

(21) Suttayakul P, Aran H, Suksaroj C, Mungkalasiri J, Wisansuwannakorn R, Musikavong. Water footprints of products of oil palm plantations and palm oil mills in Thailand. Science of the Total Environment. 2016. 542, 521-529. https://doi.org/10.1016/j.scitotenv.2015.10.060.

(22) Vargas-Pineda OI, González-García N, J.M. TG. Análisis de un sistema de cosecha de agua lluvia a pequeña escala con finalidad pecuaria. Revista Luna Azul. 2018; 46:20-32.

(23) Molden D, Oweis TY, Pasquale S, Kijne JW, Hanjra MA, Bindraban PS, et al. Pathways for increasing agricultural water productivity, No H040200, IWMI Books, Reports. Available from: https://econpapers.repec.org/RePEc:iwt:bosers:h040200.

(24) De Fraiture C, & Wichelns D. Satisfying future water demands for agriculture. Agricultural water management. 2010; 97:502-511. http://dx.doi.org/10.1016/j.agwat.2009.08.008

Received 2021-01-16
Accepted 2021-05-25
Published 2022-01-15