Study of the mechanical properties of a composite material from polypropylene matrix with guadua fibers and ceramic powder
Main Article Content
The use of natural fibers as a reinforcement in Compound Materials (CM) has been grew up in recent years. In this case, it is a CM with matrix of recycled polypropylene (PP), coming from lids of different packaging using in products of daily consume, for the reinforcement, natural Guadua Angustifolia fibers and tenacious ceramic powder was chosen. The Guadua fiber was obtained under drying and immunized conditions, according to the process of "Guadua Factoria Company". The drying is made to reduce the moisture on the Guadua and for prevent formation of fungi and lichens, the process allows a correct adhesion with the matrix too. The powder of tenacious ceramic is also a recycled material; it was obtained from ceramic floors that were pulverized before insertion into the CM. The proportions used to manufacture the MC specimens were; a group of 100% PP and other groups with different proportions of materials, in that groups, PP matrix was remained in 60%, and the reinforcement materials were combined in the following proportions, one with 30% Guadua fiber and 10% ceramic powder, other with 33% Guadua fiber and 7% ceramic powder and the last one with 35% Guadua fiber and 5% ceramic powder. Once the CM specimens were obtained, mechanical tensile tests, according to the norm ASTM 638D for polymers, were performed, flexion tests, according to the norm ASTM 790D for reinforced plastics, were carried out too. Results obtained were analyzed using Analysis of Variance ANOVA, finding as more important result, that the PP tensile elastic modulus increased by 53.49% when 35% of Guadua and 5% of ceramic were added.
(1) Daniel IM, Ishai O. Engineering mechanics of composite materials Volumen 13. 2nd ed. New York: Oxford University Press; 2006. 411 p.
(2) Newell J. Ciencia de materiales - aplicaciones en ingeniería. 1a ed. Alfaomega Grupo Editor; 2011. 368 p.
(3) Gil Barroso JR, Camacho AM. Introducción al conocimiento de los materiales y a sus aplicaciones. Editorial UNED; 2010. 718 p.
(4) Ahlgren WL. The Dual-Fuel Strategy: An Energy Transition Plan. Proc IEEE. 2012;100(11):3001–52. https://doi.org/10.1109/JPROC.2012.2192469.
(5) Bolden J, Abu-lebdeh T, Fini E. Utilization of recycled and waste materials in various construction applications. 2013;9(1):14-24. https://doi.org/10.3844/ajessp.2013.14.24.
(6) Alves-Fidelis ME, Castro-Pereira TV, Martins-Gomes O, De Andrade F, Toledo-Filho RD. The effect of fiber morphology on the tensile strength of natural fibers. Journal of Materials Research and Technology. 2013;2(2):149-157. https://doi.org/10.1016/j.jmrt.2013.02.003.
(7) Hurtado SGG, Revelo JC, Pruna CF, Barragán VHG. Obtención y Caracterización de Compuestos de Polipropileno Reforzado con Nanoarcillas Mediante Extrusión e Inyección. Rev Politécnica. 2015;35(3):43. Available from: https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/397.
(8) Caicedo C, Vásquez Arce A, Crespo LM, De la Cruz H, Ossa ÓH. Material compuesto de matriz polipropileno (PP) y fibra de cedro: influencia del compatibilizante PP-g-MA. Inf Téc. 2015;79(2):118. https://doi.org/10.23850/22565035.156.
(9) Passatore CR, Leão AL, Rosa D dos S. Compuestos de polipropileno reforzado con fibra de piasava. In: XIV SLAP/XII CIP 2014. Porto de Galinhas, Brasil: Associação Brasileira de Polímeros - ABPol; 2014.
(10) Silva GD, Almeida YM, Sanguinetti RAF, Yadava YP. efeitos da adição de partículas de alumina em compósitos de polipropileno. In: 12° Congresso Brasileiro de Polímeros (12°CBPol) [Internet]. São Carlos: Associação Brasileira de Polímeros - ABPol; 2013. p. 1–4. Available from: http://e-democracia.com.br/cbpol/anais/2013/pdf/6FCN.pdf
(11) Ordoñez-Benavides GJ. Evaluación de las propiedades térmicas y mecánicas del polipropileno reforzado con zeolitas tipo ZSM-5. [Master’s Thesis]. Medellín: Instituto Tecnológico Metropolitano; 2016. Available from: https://repositorio.itm.edu.co/handle/20.500.12622/502
(12) Rosales C, Sabino M, Perera R, Rojas H, Romero N. Estudio de mezclas de poli (ácido láctico) con polipropileno y nanocompuestos con montmorillonita. Rev Latinoam Metal Mater. 2014;34(1):158-71.
(13) Pilaguano-Guanochanga JG, Vizueta-Caisatoa PJ. Caracterización de compuestos de polipropileno reforzados con polvo de Bambú y nanoarcillas obtenidos mediante extrusión e inyección [Bacherlor’s Thesis]. Quito: Escuela Politécnica Nacional; 2017. Available from: http://bibdigital.epn.edu.ec/handle/15000/17383
(14) Jaramillo N, Hoyos D, Santa JF. Compuesto de fibra de hoja de piña fabricados mediante moldeo por compresion por capas. Ing Compet. 2016;18(2):151-62. https://doi.org/10.25100/iyc.v18i2.2163
(15) McDonald GR, Hudson AL, Dunn SMJ, You H, Baker GB, Whittal RM, et al. Bioactive contaminants leach from disposable laboratory plasticware. Science. 2008;322(5903):917. https://doi.org/10.1126/science.1162395
(16) Greenpeace. ¿Cómo llega el plástico a los océanos y qué sucede entonces? - ES [Internet]. Greenpeace España. 2015 [citado mayo 25 de 2020]. Available from: https://es.greenpeace.org/es/trabajamos-en/consumismo/plasticos/como-llega-el-plastico-a-los-oceanos-y-que-sucede-entonces/
(17) Minke G. Manual de construcción con Bambú. 1a ed. Cali, Colombia: Merlin S.E. SAS; 2010. 154 p.
(18) Malagón E. Materiales cerámicos: propiedades, aplicaciones y elaboración. UNAM; 2005. 168 p
(19) PQI de Occidente. Polipropileno [Internet]. 2013 [cited 2020 may 25]. Disponible en: http://www.plasquim.net/polipropileno.html
(20) López LF, Correal JF. Estudio exploratorio de los laminados de bambú Guadua angustifolia como material estructural. Maderas Cienc Tecnol. 2009;11(3):171-82. http://dx.doi.org/10.4067/S0718-221X2009000300001
(21) ASTM D-638 Standard Test Method for Flexural Properties Of Unreinforced And Reinforced Plastics And Electrical nsulating Materials. West Conshohocken: ASTM International.; 2001.
(22) ASTM D-790 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. West Conshohocken: ASTM International; 2010.
(23) Douglas C. Montgomery. Diseño y análisis de experimentos. segunda. Mexico: Limusa, S.A. de C.V.; 2004. 692 p.
Accepted 2021-03-01
Published 2022-01-15
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).