Main Article Content

Authors

Agri-food industries entail a relevant economic activity, with major opportunities to improve food security, the economy, and the environmental performance of food systems. However, those opportunities can be challenged by Food Waste (FW), since estimates suggest that 55% of certain groups of food products, such as fruits and vegetables are lost or wasted along the food supply chain. The Latin American and Caribbean region is one of the most relevant in the world supply of fruits, based in a high number of small-scale farmers and agri-processors. Strategies that aid in better management of FW consider the recovery and recycling of still valuable materials from the waste. In consequence, this study focused on comparing technical parameters of four biowaste treatments, to valorize the FW that is originated by small fruit-processing agroindustry in the Latin American country of Costa Rica. The main results indicate that the Takakura-type composting method in tumblers presents appropriate technical conditions to valorize this type of FW, due to the obtention of compost for potential use in agricultural or gardening. The bio-drying alternative will aid in case the treated waste needs to be stored or transported for further uses or disposal since it is a stabilized material, hence less weight, and humidity content, and potentially fewer emissions are expected.


However, the observed conditions of this study, indicate it is not advisable to use this later directly as a soil amendment since the temperatures reached during the experiment might not assure the inactivation of possibly present pathogens.


Agri-food industries entail a relevant economic activity, with major opportunities to improve food security, the economy, and the environmental performance of food systems. However, those opportunities can be challenged by Food Waste (FW), since estimates suggest that 55% of certain groups of food products, such as fruits and vegetables are lost or wasted along the food supply chain. The Latin American and Caribbean region is one of the most relevant in the world supply of fruits, based in a high number of small-scale farmers and agri-processors. Strategies that aid in better management of FW consider the recovery and recycling of still valuable materials from the waste. In consequence, this study focused on comparing technical parameters of four biowaste treatments, to valorize the FW that is originated by small fruit-processing agroindustry in the Latin American country of Costa Rica. The main results indicate that the Takakura-type composting method in tumblers presents appropriate technical conditions to valorize this type of FW, due to the obtention of compost for potential use in agricultural or gardening. The bio-drying alternative will aid in case the treated waste needs to be stored or transported for further uses or disposal since it is a stabilized material, hence less weight, and humidity content, and potentially fewer emissions are expected. However, the observed conditions of this study, indicate it is not advisable to use this later directly as a soil amendment since the temperatures reached during the experiment might not assure the inactivation of possibly present pathogens.

Laura Patricia Brenes-Peralta, Tecnologico de Costa Rica, Agribusiness School/Escuela de Agronegocios & Agroforestry Academic Area/Área Académica Agroforestal, Cartago, Costa Rica

Agribusiness Engineer and Master in Environmental Management. She currently is a PhD Candidate in Agricultural, Environmental and Food Science and Technology at the University of Bologna. She is an Associate Professor and Researcher at the Agribusiness School at the Tecnológico de Costa Rica and contributes to the Agribusiness Engineering graduate program and the Natural Resources Management and Production Technologies Master program. Her research interests focus on sustainable food systems, food loss and waste reduction, waste valorization, and value adding. together with the link these have in public policy making processes. 

1.
Brenes-Peralta LP, Jiménez-Morales MF, Campos-Rodríguez R. Food waste valorization through composting and bio-drying for small scale fruit processing agro-industries. inycomp [Internet]. 2021 Jan. 15 [cited 2024 Nov. 5];23(1):e9623. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/9623

(1) Mink P, Faes D, Solon MM, Vaart N van der, editors. Sustainable Food Systems for All – Catalyzing Change through Multi-Stakeholder Action. In: 1st Global Conference of the 10YFP Sustainable Food Systems (SFS) Programme. Pretoria, South Africa; 2017.

(2) Accorsi R, Manzini R, editors. Sustainable Food Supply Chains - Planning, Design, and Control through Interdisciplinary Methodologies. 1st ed. Elsevier Academic Press; 2019. 394 p.

(3) Vittuari M, Menna F De, García-Herrero L, Pagani M, Brenes-Peralta L, Segrè A. Food systems sustainability: The complex challenge of food loss and waste. In: Accorsi R, Manzini R, editors. Sustainable Food Supply Chains Planning, Design, and Control through Interdisciplinary Methodologies. 1st ed. Elsevier Academic Press; 2019. p. 249–60.

(4) HLPE - FAO. Food losses and waste in the context of sustainable food systems [Internet]. 2014. (HLPE Reports series). Report No.: 8. [cited 2020 March 16]. Available from: http://www.fao.org/3/a-i3901e.pdf.

(5) Östergren K, Gustavsson J, SIK (The Swedish Institute for Biotechnology and Food), Bos-Brouwers H, Timmermans T, Wageningen UR, et al. FUSIONS Definitional Framework for Food Waste [Internet]. Borås, Sweden; 2014 [cited 2020 Feb 26]. Available from: https://www.eu-fusions.org/phocadownload/Publications/FUSIONS Definitional Framework for Food Waste 2014.pdf.

(6) FAO. Boletín Pérdidas y Desperdicio de Alimentos en América Latina y el Caribe [Internet]. Santiago de Chile; 2014 [cited 2020 Mar 10]. Available from: http://www.fao.org/3/a-i3942s.pdf.

(7) FAO. The State of Food Security and Nutrition in the World 2019 Safeguarding against economic slowdowns and downturn [Internet]. Rome; 2019 [cited 2020 Mar 10]. Available from: http://www.fao.org/3/ca5162en/ca5162en.pdf.

(8) FAO. Food Loss and Food Waste [Internet]. Policy Support and Governance Gateway. 2016 [cited 2020 Mar 10]. Available from: http://www.fao.org/policy-support/policy-themes/food-loss-food-waste/en/.

(9) FAO. FAO and the SGFs, Indicators: Measuring up to the 2030 Agenda for Sustainable Development [Internet]. Rome; 2017 [cited 2020 Mar 10]. Available from: http://www.fao.org/3/a-i6919e.pdf.

(10) Parfitt J, Barthel M, Macnaughton S. Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc B. 2010;365(1554):3065–81. https://doi.org/10.1098/rstb.2010.0126.

(11) WRI, CGF, FAO, UNEP, WRAP, WBCSD. Food Loss and Waste Accounting and Reporting Standard. Rome; 2016 [cited 2020 March 10]. Available from: https://www.wbcsd.org/Programs/Food-and-Nature/Food-Land-Use/Climate-Smart-Agriculture/Resources/Food-Loss-and-Waste-Accounting-and-Reporting-Standard.

(12) Corrado S, Caldeira C, Eriksson M, Jørgen-Hanssen O, Hauserd H-E, Holsteijn F van, et al. Food waste accounting methodologies: Challenges, opportunities, and further advancements. Glob Food Sec. 2019;20:93–100. https://doi.org/10.1016/j.gfs.2019.01.002.

(13) FAO. Boletín Pérdidas y Desperdicios de Alimentos en América Latina y el Caribe [Internet]. Rome; 2017 [cited 2020 Feb 18]. Available from: http://www.fao.org/3/a-i7248s.pdf.

(14) OECD/FAO. Agricultural Outlook 2019-2028. Paris: OECD Publishing; 2019.

(15) Brenes-Peralta L, Jimenez-Morales MF, Gamboa-Murillo M. Diagnóstico de Pérdidas y Desperdicio Alimenticio en dos canales de comercialización de la Agrocadena de Tomate Costarricense para su posterior Disminución [Internet]. Cartago, Costa Rica; 2015. Available from: http://hdl.handle.net/2238/6458.

(16) Brenes-Peralta L, Campos-Rodríguez R, Jimenez-Morales MF, Gamboa-Murillo M. Aprovechamiento de residuos sólidos orgánicos: oportunidad para un sistema alimentario e institución sostenibles. InvestigaTEC. 2017;(29):22–4.

(17) Chaves-Arias R, Campos–Rodríguez R, Brenes-Peralta L, Jiménez-Morales MF. Compostaje de residuos sólidos biodegradables del restaurante institucional del Tecnológico de Costa Rica. Rev Tecnol En Marcha. 2019;32(1):39–53. https://doi.org/10.18845/tm.v32i1.4117.

(18) Ávila-Hernández M, Campos-Rodríguez R, Brenes-Peralta L, Jiménes-Morales MF. Generación de biogás a partir del aprovechamiento de residuos sólidos biodegradables en el Tecnológico de Costa Rica, sede Cartago. Rev Tecnol En Marcha. 2018;31(2):159–70. https://doi.org/10.18845/tm.v31i2.3633.

(19) Ramírez-Ramírez F, Campos-Rodríguez R, Jiménez-Morales MF, Brenes-Peralta LP. Evaluación técnica, ambiental y económica de tres tipos de tratamiento para el cultivo de lechuga en huertas caseras de Guácimo, Limón, Costa Rica. Rev Tecnol En Marcha. 2016;29(8):14–24. https://doi.org/10.18845/tm.v29i8.2981.

(20) Corona B, Shen L, Reike D, Carreón JR, Worrell E. Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resour Conserv Recycl. 2019;151:104498.https://doi.org/10.1016/j.resconrec.2019.104498.

(21) Papargyropoulou E, Lozano R, Steinberger JK, Wright N, Ujang Z bin. The food waste hierarchy as a framework for the management of food surplus and food waste. J Clean Prod. 2014;76:106–15.https://doi.org/10.1016/j.jclepro.2014.04.020.

(22) Borrero-González G, Arias-Aguilar D, Campos-Rodríguez R, Pacheco-Rodríguez F. Comparative study on the use of two substrates with microbial inoculants for organic solid waste domestic composting. Rev Tecnol En Marcha. 2015;29(1):28–37. https://doi.org/10.18845/tm.v29i1.2536.

(23) Rodríguez EMS, Morales RB, Martínez FR. Biosecado en invernaderos de residuos sólidos orgánicos. In: XII Congreso Nacional de Biotecnología y Bioingeniería. Morelia, Michoacán; 2009.

(24) Contreras-Cisneros RM, Robles-Martínez F, Franco-Hernández MO, Piña-Guzmán AB. Efecto de Residuos sólidos orgánicos biosecados en el crecimiento de lechuga. In: VII Simposio Iberoamericano en Ingeniería de Residuos Hacia una economía circular. Santander, España: REDISA; 2017. p. 420–4.

(25) CEPAL. Banca de desarrollo y pymes en Costa Rica [Internet]. Santiago de Chile; 2009. (Serie Financiamiento del desarrollo). Report No.: 209. [cited 2020 March 10]. Available from:https://repositorio.cepal.org/bitstream/handle/11362/5185/1/S0900127_es.pdf

(26) Bueno-Bosch M. Cómo hacer un buen compost: manual para horticultores ecológicos. 5th ed. España: FERTILIDAD DE LA TIERRA; 2010. 170 p.

(27) Colomer FJ, Herrera L, Gallardo A, Bovea MD, Robles F. El biosecado como proceso biológico para minimizar la humedad de residuos de jardinería. In: XV Congreso Internacional de Ingeniería de Proyectos. Huesca, España; 2011. p. 948–66.

(28) Jiménez-Antillón J, Calleja-Amador C, Romero-Esquivel LG. Food Waste Recovery with Takakura Portable Compost Boxes in Offices and Working Places. Resources. 2018;7(4):84. https://doi.org/10.3390/resources7040084

(29) Campos-Rodríguez R, Brenes-Peralta LP, Jiménez-Morales MF. Evaluación técnica de dos métodos de compostaje para el tratamiento de residuos sólidos biodegradables domiciliarios y su uso en huertas caseras. Rev Tecnol En Marcha. 2016;29(8):25–32. https://doi.org/10.18845/tm.v29i8.2982.

(30) Tortarolo MF, Pereda M, Palma M. Influencia de la inoculación de microorganismos sobre la temperatura en el proceso de compostaje. Cienc del suelo. 2008;26(1):41–50.

(31) Arrigoni JP. Evaluación del Desempeño de Diferentes Prototipos de Compostadores en el Tratamiento de Residuos Orgánicos [dissertation]. Buenos Aires: Universidad Nacional del Comahue; 2011.

Received 2020-05-06
Accepted 2020-09-17
Published 2021-01-15