Main Article Content

Authors

This article describes the tests carried out to evaluate the process efficiency water treatment by electrocoagulation in construction paint waste water. Electrocoagulation process consists of an electrolytic reactor, equipped with a current source and electrodes responsible for providing the destabilizing ions of colloidal particles, so that they replace the function of the chemical compounds used in conventional wastewater treatment. For the experimental design, we use drinking water and wall paint, in order to treat the solution by electrocoagulation in a treatment scale plant to compare the results before and after treatment, the variables to be measured are: dissolved oxygen (DO); turbidity; pH; conductivity; temperature; chemical oxygen demand (COD).After review the efficiencies obtained, we proceed to the development of an equipment treatment that can treat the waste water from washing brushes and rollers to be reused again in the washing, avoiding contamination caused by washing tools after painting surfaces in construction processes.

1.
Forero G, Hernández-Lara R, Rojas O. Development of an electrocoagulation equipment for wall paint wastewater treatment. inycomp [Internet]. 2020 Jul. 1 [cited 2024 Nov. 18];22(2):1-10. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/9474

(1) Aguilar E. Efficiency’s evaluation of an electrocoagulation cell at scale laboratory for water treatment. Rev. del Instituto de Investigación (RIIGEO) FIGMMG-UNMS. 2015; 18(35): 69-73. Doi: 10.15381/iigeo.v18i35.11843.

(2) Ruiz AA. La electrocoagulación: una alternativa para el tratamiento de aguas residuales. Revista Lasallista de investigación. 2005; 2(1): 49-56.

(3) Niño GEA, Barrera CAC, García AB, Lumbaque EC. Electrocoagulation as an efficient treatment for the removal of heavy metals from wastewater. Revista Facultad de Ciencias Básicas. 2013; 9(2): 306-317.

(4) Verma SK, Khandegar V, Saroha AK. Removal of chromium from electroplating industry effluent using electrocoagulation. Journal of Hazardous, Toxic, and Radioactive Waste. 2013; 17(2): 146-152. Doi: 10.1061/(ASCE)HZ.2153-5515.0000170.

(5) Bibiana N, Posada M, Eunice G, Niño A, Posada NBM, Niño GEA. Electrocoagulation system as treatment of galvanic wastewater. Ciencia e ingeniería Neogranadina. 2010; 20(1): 33-44. Doi: 10.18359/rcin.282.

(6) Cañizares P, Martínez F, Sáez C, Rodrigo M. The electrocoagulation, an alternative to the conventional coagulation process of wastewater. Afinidad. 2009; 66(539):27-37.

(7) Arias-Cepeda WG. Remoción de Cromo (III) y DQO a través de electrocoagulación en aguas residuales de la industria curtiembre haciendo uso racional de laenergía [master’s thesis]. Bogotá: Universidad Libre de Colombia; 2013.

(8) Diaz JJF, Aguado AEE, Martinez JA. Treatment of wastewater from chemical origin by electrocoagulation. Avances: Investigación en Ingeniería. 2014; 11(1): 65-69. Doi: 10.18041/1794-4953/avances.1.332.

(9) Vaca MCG, Ubaque CAG, Solórzano JSP. Exploratory study of dye wastewater treatment through the electrocoagulation/electroflotation method. Tecnura. 2016; 20(47): 107-117. Doi: 10.14483/udistrital.jour.tecnura.2016.1.a09.

(10) Mendoza AG, Guamán M, Pacheco CA. (2016). Aplicación del principio de electrocoagulación en el tratamiento del agua residual textil. DELOS: Desarrollo Local Sostenible. 2016; 9(26): 10.