Contenido principal del artículo

Autores

Este artículo se enfoca en revisar los modelos de mercados eléctricos y las características de las nano redes
inteligentes, realizando un estudio de los aspectos principales, estructura e integración. Investigaciones previas son discutidas e ideas fundamentales son desarrolladas y explicadas, y finalmente variables y restricciones son expuestas para modelar un mercado eléctrico incluyendo las consideraciones para nano redes inteligentes.

 

1.
Viñán WM, García EM. Mercados Eléctricos para Nano-Redes Inteligentes. inycomp [Internet]. 31 de julio de 2019 [citado 4 de febrero de 2025];21(2):1-9. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/7462

(1) Soares N, Martins AG, Carvalho AL, Caldeira C, Du C, Castanheira E, et al. The challenging paradigm of interrelated energy systems towards a more sustainable future. Renew Sustain Energy Rev. 2018;95:171–93. Doi: 10.1016/j.rser.2018.07.023. Avalaible from: https://www.sciencedirect.com/science/article/pii/S136403211830529X.

(2) Huang B, Xie G, Kong W, Li Q. Study on smart grid and key technology system to promote the development of distributed generation. En: 2012 IEEE Innovative Smart Grid Technologies - Asia, ISGT Asia 2012 [Internet]. Tianjin, China: IEEE Institute of Electrical and Electronics Engineers; 2012. p. 1–4. Avalaible from: https://ieeexplore.ieee.org/abstract/document/6303265.

(3) Garcia E, Isaac I. Demand response systems for integrating energy storage batteries for residential users. En: 2016 IEEE Ecuador Technical Chapters Meeting, ETCM 2016 [Internet]. Guayaquil, Ecuador: IEEE Institute of Electrical and Electronics Engineers; 2016. p. 1–6. Avalaible from: https://ieeexplore.ieee.org/document/7750818.

(4) Saebi J, Javidi MH. Implementation of demand response in different control strategies of smart grids. En: 2012 2nd Iranian Conference on Smart Grids, ICSG 2012 [Internet]. Tehran, Iran: IEEE Institute of Electrical and Electronics Engineers; 2012. p. 1–4. Disponible en: https://ieeexplore.ieee.org/document/6243525.

(5) Fahimi B, Kwasinski A, Davoudi A, Balog R, Kiani M. Charge It! IEEE Power Energy Mag [Internet]. 2011;9(4):54–64. Avalaible from: https://ieeexplore.ieee.org/document/5899017.

(6) Bruno S, Giannoccaro G, La Scala M. Optimization of residential storage and energy resources under demand response schemes. En: 19th IEEE Mediterranean Eletrotechnical Conference, MELECON 2018 [Internet]. Marrakech, Morocco: IEEE Institute of Electrical and Electronics Engineers; 2018. p. 225–30. Avalaible from: https://ieeexplore.ieee.org/abstract/document/8379098.

(7) Manshadi SD, Khodayar ME. A Hierarchical Electricity Market Structure for the Smart Grid Paradigm. IEEE Trans Smart Grid [Internet]. 2016;7(4):1866–75. Disponible en: https://ieeexplore.ieee.org/document/7112538.

(8) Manoochehri H, Fereidunian A. A multimarket approach to peak-shaving in Smart Grid using time-of-use prices. En: 2016 8th International Symposium on Telecommunications, IST 2016 [Internet]. Tehran, Iran: IEEE Institute of Electrical and Electronics Engineers; 2017. p. 707–12. Available from: https://ieeexplore.ieee.org/document/7881915.

(9) Bhalshankar SS, Thorat CS. Integration of smart grid with renewable energy for energy demand management: Puducherry case study. En: International Conference on Signal Processing, Communication, Power and Embedded System, SCOPES 2016 - Proceedings [Internet]. Paralakhemundi, India: IEEE Institute of Electrical and Electronics Engineers; 2017. p. 1–5. Available from: https://ieeexplore.ieee.org/document/7955498.

(10) Morcillo JD, Franco CJ, Angulo F. Delays in electricity market models. Energy Strateg Rev [Internet]. 2017;16:24–32. Available from: http://dx.doi.org/10.1016/j.esr.2017.02.004.

(11) García EM, Águila A, Isaac I, González JW, López G. Analysis of voltage profile to determine energy demand using Monte Carlo algorithms and Markov Chains (MCMC). En: 2016 51st International Universities Power Engineering Conference, UPEC [Internet]. Coimbra, Portugal: IEEE Institute of Electrical and Electronics Engineers; 2017. p. 1–6. Available from: https://ieeexplore.ieee.org/document/8114092.

(12) De Oliveira-De Jesus PM, Antunes CH. Economic valuation of smart grid investments on electricity markets. Sustain Energy, Grids Networks [Internet]. 2018;16:70–90. Available from: https://doi.org/10.1016/j.segan.2018.05.003.

(13) Grimm V, Martin A, Schmidt M, Weibelzahl M, Zöttl G. Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes. Eur J Oper Res [Internet]. 2016;254(2):493–509. Available from: https://www.sciencedirect.com/science/article/pii/S0377221716301904.

(14) Papalexopoulos A. Lessons learned from past electricity market design models and a road map for next generation design models. En: 2006 IEEE Power Engineering Society General Meeting [Internet]. Montreal, Canada: IEEE Institute of Electrical and Electronics Engineers; 2008. p. 2 pp. Available from: https://ieeexplore.ieee.org/document/1709496.

(15) Kakran S, Chanana S. Smart operations of smart grids integrated with distributed generation: A review. Renew Sustain Energy Rev [Internet]. 2018;81 part I:524–35. Available from: http://dx.doi.org/10.1016/j.rser.2017.07.045.

(16) Tahmasebi M, Pasupuleti J. Electricity demand uncertainty modeling using enhanced path-based scenario generation method. En: 2017 6th International Youth Conference on Energy, IYCE 2017 [Internet]. Budapest, Hungary: IEEE Institute of Electrical and Electronics Engineers; 2017. p. 1–5. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8003747.

(17) Ventosa M, Baíllo Á, Ramos A, Rivier M. Electricity market modeling trends. Energy Policy [Internet]. 2005;33(7):897–913. Available from: https://www.sciencedirect.com/science/article/pii/S0301421503003161.

(18) Streimikiene D, Siksnelyte I. Sustainability assessment of electricity market models in selected developed world countries. Renew Sustain Energy Rev [Internet]. 2016;57:72–82. Available from: http://dx.doi.org/10.1016/j.rser.2015.12.113.

(19) Li X, Gao L, Wang G, Gao F, Wu Q. Investing and pricing with supply uncertainty in electricity market: A general view combining wholesale and retail market. China Commun [Internet]. 2015;12(3):20–34. Available from: https://ieeexplore.ieee.org/document/7084360.

(20) Batas-Bjelic I, Rajakovic N, Duic N. Smart municipal energy grid within electricity market. Energy [Internet]. 2017;137:1277–85. Available from: https://doi.org/10.1016/j.energy.2017.06.177.

(21) Wu JK, Long J, Wang JX. Stochastic dynamic generation models in electricity markets. En: Conference, 2004 IEEE Industrial and Commercial Power Systems Technical [Internet]. Clearwater Beach, Florida, USA: IEEE Institute of Electrical and Electronics Engineers; 2004. p. 45–9. Available from: https://ieeexplore.ieee.org/document/1314980.

(22) Bina MT, Ahmadi D. Stochastic Modeling for the Next Day Domestic Demand Response Applications. IEEE Trans Power Syst [Internet]. 2015;30(6):2880–93. Available from: https://ieeexplore.ieee.org/document/7010039.