An approximation to the use of self-adaptive genetic algorithms in weight optimization of 3-D steel trusses
Main Article Content
In the past few decades structural optimization through metaheuristics has gain recognition in the scientific community; non the less, to guarantee good results we require a good selection of metaheuristic’s parameters. In this paper we propose a multi-chromosome genetic algorithm with self-adaptive parameters, to optimize steel trusses in a three-dimensional space. The design variable are the sections assign to each truss element of the structure. The optimization objective is the minimize the weight of the structure, considering the displacement y maximum stress as constrains. The propose algorithm was applied to the optimization of two trusses, obtaining designs that had a 35% less weight than the initial designs and comparable to results obtained in other papers. However, the adaptation of the parameters allows a more robust optimization process when analyzing different types of trusses and eliminates the initial runs of the optimization algorithm required to calibrate the initial parameters.
(1) Coello-Coello CA, Rudnick M, Christiansen AD. Using genetic algorithms for optimal design of trusses. In: Proceedings of the Sixth International Conference on Tools with Artificial Intelligence TAI 94. New Orleans, LA, USA;1994:88-94. https://doi.org/10.1109/TAI.1994.346509.
(2) Sigmund O. Topology optimization: a tool for the tailoring of structures and materials. Phil. Trans. of the Royal Society A. 2000;358(1765):211-227. https://doi.org/10.1098/rsta.2000.0528.
(3) Toğan V, Daloğlu AT. An improved genetic algorithm with initial population strategy and self-adaptivee member groping. Comp. & Struc. 2008;86:11-12. https://doi.org/10.1016/j.compstruc.2007.11.006.
(4) Talaslioglu T. A new genetic algorithm methodology for design optimization of truss structures: bipopulation-based genetic algorithm with enhanced interval search. Model. and Simul. in Eng. 2009;615162.https://doi.org/10.1155/2009/615162.
(5) Erbatur F, Hasançebi O, Tütüncü I, Kılıç H. Optimal design of planar and space structures with genetic algorithms. Comp. & Struc. 2000;75(2):209-224. https://doi.org/10.1016/S0045-7949(99)00084-X.
(6) Dede T, Bekiroğlu S, Ayvaz Y. Weight minimization of trusses with genetic algorithm. Applied Soft Comp.2011;11(2):2565-2575. https://doi.org/10.1016/j.asoc.2010.10.006.
(7) Aminifar F, Aminifar F, Nazarpour D. Optimal design of truss structures via an augmented genetic algorithm. Turkish J. of Eng. & Envi. Sciences. 2013;37:56-68. https://doi.org/10.3906/muh-1203-13.
(8) Talbi E-G. Metaheuristics: From Design to Implementation. New Jersey: John Wiley & Sons,Inc.; 2009. 624 p.
(9) Smith JE, Eiben AE. Parameter Control in Evolutionary Algorithms. In: Introduction to Evolutionary Computing. Natural Co. Berlin, Heidelberg: Springer; 2003. p. 129–51.
(10) Holland JH. Adaptation in natural and artificial systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. 1st ed. London (UK): MIT Press; 1992. 211 p.
(11) Villalba JD, Laier JE. Localising and quantifying damage by means of multi-chromosome genetic algorithm. Adv in Eng Soft. 2012;50:150-157. https://doi.org/10.1016/j.advengsoft.2012.02.002.
(12) Mitchell M. An Introduction to Genetic Algorithms. London (UK): MIT Press; 1996. 221 p.
(13) Lee KS, Geem ZW, Lee SH, Bae KW. The harmony search heuristic algorithm for discrete structural optimization. Eng. Opt. 2005; 37(7):663-684. https://doi.org/10.1080/03052150500211895.
(14) Camp CV. Design of Space Trusses Using Big Bang–Big Crunch Optimization. J of Struct. Eng. 2007;133(7):999–1008. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999).
(15) Kripka M. Discrete Optimization of Trusses by Simulated Annealing. J. of the Braz. Soc. of Mech. Sciences & Eng. 2004; 26(2):170-173.
(16) Kaveh A, Shojaee S. Optimal design of skeletal structures using ant colony optimization. International J. of Num. Methods in Eng. 2007;70(5):563–581. https://doi.org/10.1002/nme.1898.
(17) Li L, Huang ZB, .Liu F. A heuristic particle swarm optimization method for truss structures with discrete variables. Comp. & Struc. 2009; 87(7-8):435–443. https://doi.org/10.1016/j.compstruc.2009.01.004.
(18) Sonmez M. Artificial Bee Colony algorithm for optimization of truss structures. Applied Soft Comp. 2011;11(2):2406–2418. https://doi.org/10.1016/j.asoc.2010.09.003.
(19) Degertekin SO, Hayalioglu MS. Sizing truss structures using teaching-learning-based optimization. Comp. & Struc. 2013;119:177–188. https://doi.org/10.1016/j.compstruc.2012.12.011.
Accepted 2020-11-10
Published 2021-01-15
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).