Comparative study of the dependence effect on competing risks models with three modes of failure via estimators copula based
Main Article Content
In a dependent competing risks model is impossible to determine the marginal distributions from the competing risks data alone. This is known as the identifiability problem. Zheng and Klein (1995) propose the copula graphic estimator as a solution to the identifiability problem for two competing risks. For that, they assume a dependence structure using a copula for the joint distribution of failure times and its dependence parameter known. Lo and Wilke (2010) propose the risk pooling method as an extension of the copula graphic estimator when the copula is Archimedean. This research for the trivariate case, is compared the true joint survival function, with joint survival function estimated assuming independence among failure times and the survival function estimated by the risk pooling method. These comparisons are performed via simulation considering failure times associated with multivariate Weibull and lognormal distributions and different levels of dependence between failure times. We conclude that the estimator assuming independence is less efficient than the estimator of the survival function using the risk pooling method. The methodology is illustrated with reliability data of FL245 switches in Interconexión Eléctrica S.A. E.S.P. (ISA), which show the usefulness of this topic in industrial reliability.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).