Evaluación económica de manganeso impregnado con Cu para captura de CO2 en combustión con transportadores sólidos de oxígeno
Contenido principal del artículo
Introducción: la combustión con transportadores sólidos de oxígeno (CLC por sus siglas en inglés) es una tecnología prometedora para la captura de CO2.
Objetivo: este estudio tuvo como objetivo evaluar el mineral de manganeso impregnado con Cu (OXMN009P) como un transportador de oxígeno eficaz para este proceso, utilizando específicamente CO y H2 como combustibles.
Metodología: la metodología implicó análisis termogravimétrico (TGA) y pruebas en un reactor de lecho fluidizado discontinuo (bFB) para evaluar el rendimiento del material.
Resultados: los resultados mostraron que OXMN009P exhibió un índice de velocidad de reacción (RI) que oscilaba entre 6.1 y 20.1% /min. También logró altas eficiencias de conversión de combustible, casi el 100% para H2 y aproximadamente el 70% para CO, lo que demuestra una reactividad y capacidad de transporte de oxígeno mejoradas. Además, la vida útil de las partículas se extendió a 2031 horas, lo que reduce significativamente la las reposiciones anuales de inventario de sólidos.
Conclusiones: en conclusión, el análisis económico sugiere que el costo del material de OXMN009P no sería un factor limitante para la implementación de la tecnología CLC.
- Transportadores sólidos de oxígeno
- Mineral de manganeso
- Impregnación de cobre
- Indice de velocidad
- vida útil de las partículas
Mendiara T, Gayán P, García-Labiano F, de Diego LF, Pérez-Astray A, Izquierdo MT, et al. Chemical Looping Combustion of Biomass: An Approach to BECCS. Energy Procedia. 2017;114:6021-9. DOI: https://doi.org/10.1016/j.egypro.2017.03.1737
Lyngfelt A, Hedayati A, Augustsson E. Fate of NO and Ammonia in Chemical Looping Combustion─Investigation in a 300 W Chemical Looping Combustion Reactor System. Energy & Fuels. 2022;36(17):9628-47. DOI: https://doi.org/10.1021/acs.energyfuels.2c00750
Gayán P, Forero CR, Abad A, de Diego LF, García-Labiano F, Adánez J. Effect of Support on the Behavior of Cu-Based Oxygen Carriers during Long-Term CLC Operation at Temperatures above 1073 K. Energy & Fuels. 2011;25(3):1316-26. DOI: https://doi.org/10.1021/ef101583w
Mendiara T, Gayán P, Abad A, García-Labiano F, de Diego LF, Adánez J. Characterization for disposal of Fe-based oxygen carriers from a CLC unit burning coal. Fuel Processing Technology. 2015;138:750-7. DOI: https://doi.org/10.1016/j.fuproc.2015.07.019
Linderholm C, Schmitz M, Knutsson P, Lyngfelt A. Chemical-looping combustion in a 100-kW unit using a mixture of ilmenite and manganese ore as oxygen carrier. Fuel. 2016;166:533-42. DOI: https://doi.org/10.1016/j.fuel.2015.11.015
Mei D, Soleimanisalim AH, Linderholm C, Lyngfelt A, Mattisson T. Reactivity and lifetime assessment of an oxygen releasable manganese ore with biomass fuels in a 10 kWth pilot rig for chemical looping combustion. Fuel Processing Technology. 2021;215:106743. DOI: https://doi.org/10.1016/j.fuproc.2021.106743
Ströhle J, Orth M, Epple B. Chemical looping combustion of hard coal in a 1 MWth pilot plant using ilmenite as oxygen carrier. Applied Energy. 2015;157:288-94. DOI: https://doi.org/10.1016/j.apenergy.2015.06.035
Schmitz M, Linderholm C, Hallberg P, Sundqvist S, Lyngfelt A. Chemical-Looping Combustion of Solid Fuels Using Manganese Ores as Oxygen Carriers. Energy & Fuels. 2016;30(2):1204-16. DOI: https://doi.org/10.1021/acs.energyfuels.5b02440
Pérez-Astray A, Mendiara T, de Diego LF, Abad A, García-Labiano F, Izquierdo MT, et al. Improving the oxygen demand in biomass CLC using manganese ores. Fuel. 2020;274:117803. DOI: https://doi.org/10.1016/j.fuel.2020.117803
Linderholm C, Lyngfelt A, Cuadrat A, Jerndal E. Chemical-looping combustion of solid fuels – Operation in a 10 kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite. Fuel. 2012;102(0):808. DOI: https://doi.org/10.1016/j.fuel.2012.05.010
Frohn P, Arjmand M, Azimi G, Leion H, Mattisson T, Lyngfelt A. On the high-gasification rate of Brazilian manganese ore in chemical-looping combustion (CLC) for solid fuels. AIChE Journal. 2013;59(11):4346-54. DOI: https://doi.org/10.1002/aic.14168
Keller M, Leion H, Mattisson T. Mechanisms of Solid Fuel Conversion by Chemical-Looping Combustion (CLC) using Manganese Ore: Catalytic Gasification by Potassium Compounds. Energy Technology. 2013;1(4):273-82. DOI: https://doi.org/10.1002/ente.201200052
Arjmand M, Leion H, Mattisson T, Lyngfelt A. Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels. Applied Energy. 2014;113:1883-94. DOI: https://doi.org/10.1016/j.apenergy.2013.06.015
Sundqvist S, Arjmand M, Mattisson T, Rydén M, Lyngfelt A. Screening of different manganese ores for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control. 2015;43:179-88. DOI: https://doi.org/10.1016/j.ijggc.2015.10.027
Mei D, Mendiara T, Abad A, de Diego LF, García-Labiano F, Gayán P, et al. Evaluation of Manganese Minerals for Chemical Looping Combustion. Energy & Fuels. 2015;29(10):6605-15. DOI: https://doi.org/10.1021/acs.energyfuels.5b01293
Siriwardane R, Tian H, Richards G, Simonyi T, Poston J. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energy & Fuels. 2009;23(8):3885-92. DOI: https://doi.org/10.1021/ef9001605
Mattisson T, Järdnäs A, Lyngfelt A. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen - Application for chemical-looping combustion. Energy and Fuels. 2003;17(3):643-51. DOI: https://doi.org/10.1021/ef020151i
Cho P, Mattisson T, Lyngfelt A. Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion. Industrial and Engineering Chemistry Research. 2005;44(4):668-76. DOI: https://doi.org/10.1021/ie049420d
de Diego LF, García-Labiano F, Adánez J, Gayán P, Abad A, Corbella BM, et al. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel. 2004;83(13):1749-57. DOI: https://doi.org/10.1016/j.fuel.2004.03.003
Mungse P, Saravanan G, Uchiyama T, Nishibori M, Teraoka Y, Rayalu S, et al. Copper–manganese mixed oxides: CO2-selectivity, stable, and cyclic performance for chemical looping combustion of methane. Physical Chemistry Chemical Physics. 2014;16(36):19634-42. DOI: https://doi.org/10.1039/C4CP01747A
Xu L, Edland R, Li Z, Leion H, Zhao D, Cai N. Cu-Modified Manganese Ore as an Oxygen Carrier for Chemical Looping Combustion. Energy & Fuels. 2014;28(11):7085-92. DOI: https://doi.org/10.1021/ef5017686
Mohammad Pour N, Leion H, Rydén M, Mattisson T. Combined Cu/Mn Oxides as an Oxygen Carrier in Chemical Looping with Oxygen Uncoupling (CLOU). Energy & Fuels. 2013;27(10):6031-9. DOI: https://doi.org/10.1021/ef401328u
Durango EA, Forero CR, Velasco-Sarria FJ. Use of a Low-Cost Colombian Manganese Mineral as a Solid Oxygen Carrier in Chemical Looping Combustion Technology. Energy & Fuels. 2021;35(15):12252-9. DOI: https://doi.org/10.1021/acs.energyfuels.1c00587
Forero CR, Gayán P, de Diego LF, Abad A, García-Labiano F, Adánez J. Syngas combustion in a 500 Wth chemical-looping combustion system using an impregnated Cu-based oxygen carrier. Fuel Processing Technology. 2009;90(12):1471-9. DOI: https://doi.org/10.1016/j.fuproc.2009.07.001
Xu L, Sun H, Li Z, Cai N. Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor. Applied Energy. 2016;162:940-7. DOI: https://doi.org/10.1016/j.apenergy.2015.10.167
Orrego AJ. Tesis de maestría: Preparación y caracterización de transportadores sólidos de oxígeno basados en Fe y Mn modificados con CuO para combustión con captura de CO2. Cali: Universidad del Valle; 2017.
Velasco-Sarria FJ, Forero CR, Arango E, Adánez J. Reduction and Oxidation Kinetics of Fe–Mn-Based Minerals from Southwestern Colombia for Chemical Looping Combustion. Energy & Fuels. 2018;32(2):1923-33. DOI: https://doi.org/10.1021/acs.energyfuels.7b02188
Stobbe ER, de Boer BA, Geus JW. The reduction and oxidation behaviour of manganese oxides. Catalysis Today. 1999;47(1-4):161-7. DOI: https://doi.org/10.1016/S0920-5861(98)00296-X
Cabello A, Gayán P, García-Labiano F, de Diego LF, Abad A, Adánez J. On the attrition evaluation of oxygen carriers in Chemical Looping Combustion. Fuel Processing Technology. 2016;148:188-97. DOI: https://doi.org/10.1016/j.fuproc.2016.03.004
Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chemical Engineering Science. 2001;56(10):3101-13. DOI: https://doi.org/10.1016/S0009-2509(01)00007-0
Abad A, Adánez J, García-Labiano F, de Diego LF, Gayán P, Celaya J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chemical Engineering Science. 2007;62(1-2):533-49. DOI: https://doi.org/10.1016/j.ces.2006.09.019
Arango E, Vasquez FG. Determinación de los parámetros cinéticos para la combustión usando minerales del suroccidente colombiano como transportadores sólidos de oxígeno. Cali-Colombia: Universidad del Valle; 2016.
García-Labiano F, de Diego LF, Adánez J, Abad A, Gayán P. Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion. Industrial and Engineering Chemistry Research. 2004;43(26):8168-77. DOI: https://doi.org/10.1021/ie0493311
Son SR, Kim SD. Chemical-looping combustion with NiO and Fe2O3 in a thermobalance and circulating fluidized bed reactor with double loops. Industrial & Engineering Chemistry Research. 2006;45(8):2689-96. DOI: https://doi.org/10.1021/ie050919x
Fogler HS. Elements of Chemical Reaction Engineering: Prentice Hall PTR; 2006.
Zafar Q, Abad A, Mattisson T, Gevert B, Strand M. Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particles for chemical-looping combustion. Chemical Engineering Science. 2007;62(23):6556-67. DOI: https://doi.org/10.1016/j.ces.2007.07.011
Perreault P, Patience GS. Chemical looping syngas from CO2 and H2O over manganese oxide minerals. The Canadian Journal of Chemical Engineering. 2016;94(4):703-12. DOI: https://doi.org/10.1002/cjce.22432
Ksepko E, Babiński P, Nalbandian L. The redox reaction kinetics of Sinai ore for chemical looping combustion applications. Applied Energy. 2017;190:1258-74. DOI: https://doi.org/10.1016/j.apenergy.2017.01.026
Abad A, García-Labiano F, de Diego LF, Gayán P, Adánez J. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion. Energy and Fuels. 2007;21(4):1843-53. DOI: https://doi.org/10.1021/ef070025k
Abad A, Adánez J, Cuadrat A, García-Labiano F, Gayán P, de Diego LF. Kinetics of redox reactions of ilmenite for chemical-looping combustion. Chemical Engineering Science. 2011;66(4):689-702. DOI: https://doi.org/10.1016/j.ces.2010.11.010
Velasco-Sarria FJ, Forero CR, Adánez-Rubio I, Abad A, Adánez J. Assessment of low-cost oxygen carrier in South-western Colombia, and its use in the in-situ gasification chemical looping combustion technology. Fuel. 2018;218:417-24. DOI: https://doi.org/10.1016/j.fuel.2017.11.078
Linderholm C, Knutsson P, Schmitz M, Markström P, Lyngfelt A. Material balances of carbon, sulfur, nitrogen and ilmenite in a 100 kW CLC reactor system. Int J Greenhouse Gas Control. 2014;27:188. DOI: https://doi.org/10.1016/j.ijggc.2014.05.001
Carrillo A, Forero CR. Characterization for Disposal of the Residues Produced by Materials Used as Solid Oxygen Carriers in an Advanced Chemical Looping Combustion Process. Applied Sciences. 2018;8:1787. DOI: https://doi.org/10.3390/app8101787
Adánez J, Cuadrat A, Abad A, Gayán P, de Diego LF, García-Labiano F. Ilmenite activation during consecutive redox cycles in chemical-looping combustion. Energy and Fuels. 2010;24(2):1402-13. DOI: https://doi.org/10.1021/ef900856d
Abad A, Adánez J, García-Labiano F, de Diego LF, Gayán P. Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier. Combustion and Flame. 2010;157(3):602-15. DOI: https://doi.org/10.1016/j.combustflame.2009.10.010
Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF. Progress in Chemical-Looping Combustion and Reforming technologies. Progress in Energy and Combustion Science. 2012;38(2):215-82. DOI: https://doi.org/10.1016/j.pecs.2011.09.001
UPME. Sistema de información minero Colombiano - SIMCO: Unidad de Planeación Minero-energética; 2024 [Available from: https://www1.upme.gov.co/simco/Cifras-Sectoriales/Paginas/manganeso.aspx.
Stevens R, Newby R, Keairns D, Woods M. Oxygen Carrier Production Cost. 5 th International Conference on Chemical Looping; The Chateaux, Park City, Utah, USA2018.
Cabello A, Mendiara T, Abad A, Adánez J. Techno-economic analysis of a chemical looping combustion process for biogas generated from livestock farming and agro-industrial waste. Energy Conversion and Management. 2022;267:115865. DOI: https://doi.org/10.1016/j.enconman.2022.115865
Fleiß B, Priscak J, Hammerschmid M, Fuchs J, Müller S, Hofbauer H. CO2 capture costs of chemical looping combustion of biomass: A comparison of natural and synthetic oxygen carrier. Journal of Energy Chemistry. 2024;92:296-310. DOI: https://doi.org/10.1016/j.jechem.2024.01.048
Descargas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores ceden los derechos patrimoniales a la revista y a la Universidad del Valle sobre los manuscritos aceptados, pero podrán hacer los reusos que consideren pertinentes por motivos profesionales, educativos, académicos o científicos, de acuerdo con los términos de la licencia que otorga la revista a todos sus artículos.
Los artículos serán publicados bajo la licencia Creative Commons 4.0 BY-NC-SA (de atribución, no comercial, sin obras derivadas).