Contenido principal del artículo

Autores

Introducción: la combustión con transportadores sólidos de oxígeno (CLC por sus siglas en inglés) es una tecnología prometedora para la captura de CO2.
Objetivo: este estudio tuvo como objetivo evaluar el mineral de manganeso impregnado con Cu (OXMN009P) como un transportador de oxígeno eficaz para este proceso, utilizando específicamente CO y H2 como combustibles.
Metodología: la metodología implicó análisis termogravimétrico (TGA) y pruebas en un reactor de lecho fluidizado discontinuo (bFB) para evaluar el rendimiento del material.
Resultados: los resultados mostraron que OXMN009P exhibió un índice de velocidad de reacción (RI) que oscilaba entre 6.1 y 20.1% /min. También logró altas eficiencias de conversión de combustible, casi el 100% para H2 y aproximadamente el 70% para CO, lo que demuestra una reactividad y capacidad de transporte de oxígeno mejoradas. Además, la vida útil de las partículas se extendió a 2031 horas, lo que reduce significativamente la las reposiciones anuales de inventario de sólidos.
Conclusiones: en conclusión, el análisis económico sugiere que el costo del material de OXMN009P no sería un factor limitante para la implementación de la tecnología CLC.

1.
Forero CR, Arango Durango E, Velasco FJ, Peña SE. Evaluación económica de manganeso impregnado con Cu para captura de CO2 en combustión con transportadores sólidos de oxígeno. inycomp [Internet]. 18 de marzo de 2025 [citado 2 de abril de 2025];27(1):e-20914807. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/14807

Mendiara T, Gayán P, García-Labiano F, de Diego LF, Pérez-Astray A, Izquierdo MT, et al. Chemical Looping Combustion of Biomass: An Approach to BECCS. Energy Procedia. 2017;114:6021-9.

Lyngfelt A, Hedayati A, Augustsson E. Fate of NO and Ammonia in Chemical Looping Combustion─Investigation in a 300 W Chemical Looping Combustion Reactor System. Energy & Fuels. 2022;36(17):9628-47.

Gayán P, Forero CR, Abad A, de Diego LF, García-Labiano F, Adánez J. Effect of Support on the Behavior of Cu-Based Oxygen Carriers during Long-Term CLC Operation at Temperatures above 1073 K. Energy & Fuels. 2011;25(3):1316-26.

Mendiara T, Gayán P, Abad A, García-Labiano F, de Diego LF, Adánez J. Characterization for disposal of Fe-based oxygen carriers from a CLC unit burning coal. Fuel Processing Technology. 2015;138:750-7.

Linderholm C, Schmitz M, Knutsson P, Lyngfelt A. Chemical-looping combustion in a 100-kW unit using a mixture of ilmenite and manganese ore as oxygen carrier. Fuel. 2016;166:533-42.

Mei D, Soleimanisalim AH, Linderholm C, Lyngfelt A, Mattisson T. Reactivity and lifetime assessment of an oxygen releasable manganese ore with biomass fuels in a 10 kWth pilot rig for chemical looping combustion. Fuel Processing Technology. 2021;215:106743.

Ströhle J, Orth M, Epple B. Chemical looping combustion of hard coal in a 1 MWth pilot plant using ilmenite as oxygen carrier. Applied Energy. 2015;157:288-94.

Schmitz M, Linderholm C, Hallberg P, Sundqvist S, Lyngfelt A. Chemical-Looping Combustion of Solid Fuels Using Manganese Ores as Oxygen Carriers. Energy & Fuels. 2016;30(2):1204-16.

Pérez-Astray A, Mendiara T, de Diego LF, Abad A, García-Labiano F, Izquierdo MT, et al. Improving the oxygen demand in biomass CLC using manganese ores. Fuel. 2020;274:117803.

Linderholm C, Lyngfelt A, Cuadrat A, Jerndal E. Chemical-looping combustion of solid fuels – Operation in a 10 kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite. Fuel. 2012;102(0):808.

Frohn P, Arjmand M, Azimi G, Leion H, Mattisson T, Lyngfelt A. On the high-gasification rate of Brazilian manganese ore in chemical-looping combustion (CLC) for solid fuels. AIChE Journal. 2013;59(11):4346-54.

Keller M, Leion H, Mattisson T. Mechanisms of Solid Fuel Conversion by Chemical-Looping Combustion (CLC) using Manganese Ore: Catalytic Gasification by Potassium Compounds. Energy Technology. 2013;1(4):273-82.

Arjmand M, Leion H, Mattisson T, Lyngfelt A. Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels. Applied Energy. 2014;113:1883-94.

Sundqvist S, Arjmand M, Mattisson T, Rydén M, Lyngfelt A. Screening of different manganese ores for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control. 2015;43:179-88.

Mei D, Mendiara T, Abad A, de Diego LF, García-Labiano F, Gayán P, et al. Evaluation of Manganese Minerals for Chemical Looping Combustion. Energy & Fuels. 2015;29(10):6605-15.

Siriwardane R, Tian H, Richards G, Simonyi T, Poston J. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energy & Fuels. 2009;23(8):3885-92.

Mattisson T, Järdnäs A, Lyngfelt A. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen - Application for chemical-looping combustion. Energy and Fuels. 2003;17(3):643-51.

Cho P, Mattisson T, Lyngfelt A. Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion. Industrial and Engineering Chemistry Research. 2005;44(4):668-76.

de Diego LF, García-Labiano F, Adánez J, Gayán P, Abad A, Corbella BM, et al. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel. 2004;83(13):1749-57.

Mungse P, Saravanan G, Uchiyama T, Nishibori M, Teraoka Y, Rayalu S, et al. Copper–manganese mixed oxides: CO2-selectivity, stable, and cyclic performance for chemical looping combustion of methane. Physical Chemistry Chemical Physics. 2014;16(36):19634-42.

Xu L, Edland R, Li Z, Leion H, Zhao D, Cai N. Cu-Modified Manganese Ore as an Oxygen Carrier for Chemical Looping Combustion. Energy & Fuels. 2014;28(11):7085-92.

Mohammad Pour N, Leion H, Rydén M, Mattisson T. Combined Cu/Mn Oxides as an Oxygen Carrier in Chemical Looping with Oxygen Uncoupling (CLOU). Energy & Fuels. 2013;27(10):6031-9.

Durango EA, Forero CR, Velasco-Sarria FJ. Use of a Low-Cost Colombian Manganese Mineral as a Solid Oxygen Carrier in Chemical Looping Combustion Technology. Energy & Fuels. 2021;35(15):12252-9.

Forero CR, Gayán P, de Diego LF, Abad A, García-Labiano F, Adánez J. Syngas combustion in a 500 Wth chemical-looping combustion system using an impregnated Cu-based oxygen carrier. Fuel Processing Technology. 2009;90(12):1471-9.

Xu L, Sun H, Li Z, Cai N. Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor. Applied Energy. 2016;162:940-7.

Orrego AJ. Tesis de maestría: Preparación y caracterización de transportadores sólidos de oxígeno basados en Fe y Mn modificados con CuO para combustión con captura de CO2. Cali: Universidad del Valle; 2017.

Velasco-Sarria FJ, Forero CR, Arango E, Adánez J. Reduction and Oxidation Kinetics of Fe–Mn-Based Minerals from Southwestern Colombia for Chemical Looping Combustion. Energy & Fuels. 2018;32(2):1923-33.

Stobbe ER, de Boer BA, Geus JW. The reduction and oxidation behaviour of manganese oxides. Catalysis Today. 1999;47(1-4):161-7.

Cabello A, Gayán P, García-Labiano F, de Diego LF, Abad A, Adánez J. On the attrition evaluation of oxygen carriers in Chemical Looping Combustion. Fuel Processing Technology. 2016;148:188-97.

Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chemical Engineering Science. 2001;56(10):3101-13.

Abad A, Adánez J, García-Labiano F, de Diego LF, Gayán P, Celaya J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chemical Engineering Science. 2007;62(1-2):533-49.

Arango E, Vasquez FG. Determinación de los parámetros cinéticos para la combustión usando minerales del suroccidente colombiano como transportadores sólidos de oxígeno. Cali-Colombia: Universidad del Valle; 2016.

García-Labiano F, de Diego LF, Adánez J, Abad A, Gayán P. Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion. Industrial and Engineering Chemistry Research. 2004;43(26):8168-77.

Son SR, Kim SD. Chemical-looping combustion with NiO and Fe2O3 in a thermobalance and circulating fluidized bed reactor with double loops. Industrial & Engineering Chemistry Research. 2006;45(8):2689-96.

Fogler HS. Elements of Chemical Reaction Engineering: Prentice Hall PTR; 2006.

Zafar Q, Abad A, Mattisson T, Gevert B, Strand M. Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particles for chemical-looping combustion. Chemical Engineering Science. 2007;62(23):6556-67.

Perreault P, Patience GS. Chemical looping syngas from CO2 and H2O over manganese oxide minerals. The Canadian Journal of Chemical Engineering. 2016;94(4):703-12.

Ksepko E, Babiński P, Nalbandian L. The redox reaction kinetics of Sinai ore for chemical looping combustion applications. Applied Energy. 2017;190:1258-74.

Abad A, García-Labiano F, de Diego LF, Gayán P, Adánez J. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion. Energy and Fuels. 2007;21(4):1843-53.

Abad A, Adánez J, Cuadrat A, García-Labiano F, Gayán P, de Diego LF. Kinetics of redox reactions of ilmenite for chemical-looping combustion. Chemical Engineering Science. 2011;66(4):689-702.

Velasco-Sarria FJ, Forero CR, Adánez-Rubio I, Abad A, Adánez J. Assessment of low-cost oxygen carrier in South-western Colombia, and its use in the in-situ gasification chemical looping combustion technology. Fuel. 2018;218:417-24.

Linderholm C, Knutsson P, Schmitz M, Markström P, Lyngfelt A. Material balances of carbon, sulfur, nitrogen and ilmenite in a 100 kW CLC reactor system. Int J Greenhouse Gas Control. 2014;27:188.

Carrillo A, Forero CR. Characterization for Disposal of the Residues Produced by Materials Used as Solid Oxygen Carriers in an Advanced Chemical Looping Combustion Process. Applied Sciences. 2018;8:1787.

Adánez J, Cuadrat A, Abad A, Gayán P, de Diego LF, García-Labiano F. Ilmenite activation during consecutive redox cycles in chemical-looping combustion. Energy and Fuels. 2010;24(2):1402-13.

Abad A, Adánez J, García-Labiano F, de Diego LF, Gayán P. Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier. Combustion and Flame. 2010;157(3):602-15.

Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF. Progress in Chemical-Looping Combustion and Reforming technologies. Progress in Energy and Combustion Science. 2012;38(2):215-82.

UPME. Sistema de información minero Colombiano - SIMCO: Unidad de Planeación Minero-energética; 2024 [Available from: https://www1.upme.gov.co/simco/Cifras-Sectoriales/Paginas/manganeso.aspx.

Stevens R, Newby R, Keairns D, Woods M. Oxygen Carrier Production Cost. 5 th International Conference on Chemical Looping; The Chateaux, Park City, Utah, USA2018.

Cabello A, Mendiara T, Abad A, Adánez J. Techno-economic analysis of a chemical looping combustion process for biogas generated from livestock farming and agro-industrial waste. Energy Conversion and Management. 2022;267:115865.

Fleiß B, Priscak J, Hammerschmid M, Fuchs J, Müller S, Hofbauer H. CO2 capture costs of chemical looping combustion of biomass: A comparison of natural and synthetic oxygen carrier. Journal of Energy Chemistry. 2024;92:296-310.