Propiedades texturales en oleogeles: influencia sinérgica de aceites vegetales y el aceite esencial de menta
Contenido principal del artículo
Introducción: En los últimos años se ha observado una proliferación de alternativas funcionales a las grasas convencionales, y los oleogeles han surgido como una opción viable para este propósito.
Objetivo: En este estudio se evaluaron las propiedades texturales de oleogeles formulados con aceites de soya, oliva y canola, cera de girasol y aceite esencial de menta, con el fin de determinar el efecto sinérgico de los componentes sobre las características texturales.
Metodología: Se empleó un diseño experimental de mezcla I-óptimo para la evaluación de estos cinco ingredientes, utilizando la firmeza (mN) y la consistencia (mN·s) como variables de respuesta, determinadas mediante análisis instrumental de textura.
Resultados: El análisis reveló que la cera de girasol tuvo el mayor impacto en la textura del oleogel, estableciendo una concentración mínima de gelificación del 2% (p/p). Los resultados demostraron que la firmeza del oleogel presentó un amplio rango, oscilando entre 75.64 y 1754.05 mN. Además, los datos indicaron que este parámetro podía ajustarse a tres niveles principales: blando (2%), medio (3–5%) y duro (7%), dependiendo de la cantidad de cera de girasol utilizada. Se observó un cambio notable en la consistencia, evidenciado por una variación significativa de 1023 a 17934 mN·s al aumentar la concentración del agente gelificante del 2% al 5% (p/p).
Conclusiones: Estos hallazgos demuestran que las propiedades mecánicas de los oleogeles pueden ajustarse de forma precisa modificando el tipo de aceite vegetal y la concentración de cera de girasol, lo que ofrece una alternativa potencial a las grasas tradicionales en diversas industrias, incluyendo la alimentaria, cosmética y farmacéutica.
Aguilar-Zárate M, Macias-Rodriguez B, Toro-Vazquez J, Marangoni A. Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydrate Polymers. 2019;205:98-105
Davidovich-Pinhas M, Barbut S, Marangoni A. Development, Characterization, and Utilization of Food-Grade Polymer Oleogels. Annual Review of Food Science and Technology. 2016;7(1):65-91.10.1146/annurev-food-041715-033225
Patel A, Dewettinck K. Edible oil structuring: An overview and recent updates. Food and Function. 2016;7(1):20-9.10.1039/c5fo01006c
Blake A, Toro-Vazquez J, Hwang H-S. Wax Oleogels. Edible Oleogels: Elsevier; 2018. p. 133-71.
Wright A, Marangoni A. Vegetable oil-based ricinelaidic acid organogels-phase behavior, microstructure, and rheology. Edible Oleogels: Structure and Health Implications. 2 ed2018. p. 81-99.
Malotky D, Appell R, Ergun R. Ethyl cellulose oleogel dispersion. United States2019.
Rodriguez-Negrette A, Huck-Iriart C, Herrera M. Physical chemical croperties of Shea/Cocoa butter blends and their potential for chocolate manufacture. Journal of the American Oil Chemists' Society. 2019;96:239-48.10.1002/aocs.12189
Alvarez-Ramirez J, Vernon-Carter EJ, Carrera-Tarela Y, Garcia A, Roldan-Cruz C. Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. Lwt. 2020;130.10.1016/j.lwt.2020.109701
Barbut S, Marangoni A. Organogels use in meat processing – Effects of fat/oil type and heating rate. Meat Science. 2019;149:9-13.10.1016/j.meatsci.2018.11.003
Barbut S, Wood J, Marangoni A. Potential use of organogels to replace animal fat in comminuted meat products. Meat Science. 2016;122:155-62.10.1016/j.meatsci.2016.08.003
Gravelle A, Barbut S, Marangoni A. Ethylcellulose oleogels: Manufacturing considerations and effects of oil oxidation. Food Research International. 2012;48:578-83.10.1016/j.foodres.2012.05.020
Gravelle A, Barbut S, Quinton M, Marangoni A. Towards the development of a predictive model of the formulation-dependent mechanical behaviour of edible oil-based ethylcellulose oleogels. Journal of Food Engineering journal. 2014;143:114-22
Ghodrati M, Farahpour MR, Hamishehkar H. Encapsulation of Peppermint essential oil in nanostructured lipid carriers: In-vitro antibacterial activity and accelerative effect on infected wound healing. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019;564:161-9.https://doi.org/10.1016/j.colsurfa.2018.12.043
Pavithra P, Mehta A, Verma R. Essential oils : from prevention to treatment of skin cancer. Drug Discovery Today. 2019;24(2):644-55
Portos S, Lucca L, Koester L. Essential oils in nanostructured systems: Challenges in preparation and analytical methods. Talanta. 2019;195:204-14.10.1016/j.talanta.2018.11.029
Hüsnü K, Buchbauer G. Handbook of essential oils science, technology and applications. Taylor & F ed. Boca Raton: CRC press; 2010. 981- p.
Stashenko E. Aceites esenciales. 1 ed. Bucaramanga: Centro Nacional de Investigaciones para la Agroindustrialización de Especies Vegetales Aromáticas y Medicinales Tropicales - CENIVAM; 2009.
Bilia AR. Herbal Medicinal Products versus Botanical-Food Supplements in the European market: State of Art and Perspectives. Natural Product Communications. 2015;10(1):1934578X1501000130.10.1177/1934578x1501000130
De Araujo Moysés D, Dos Santos Martins HP, Ribeiro MS, Da Rocha Galucio NC, de Souza RR, dos Santos Correa RM, et al. Mentha sp. Essential Oil and Its Applicability in Brazil. Essential Oils2023. p. 125-55.
Sehgal P, Sripriya R, Senthilkumar M. Drug delivery dressings. In: Rajendran S, editor. Advanced Textiles for Wound Care. 2 ed2019. p. 261-88.
Silva R, Costa S, Branco C, Branco A. In vitro photoprotective activity of the Spondias purpurea L. peel crude extract and its incorporation in a pharmaceutical formulation. Industrial Crops and Products. 2016;83:509-14.10.1016/j.indcrop.2015.12.077
Stea S, Beraudi A, De Pasquale D. Essential oils for complementary treatment of surgical patients: State of the art. Evidence-based Complementary and Alternative Medicine. 2014:1-6.10.1155/2014/726341
Sugumar S, Ghosh V, Nirmala MJ, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrasonics Sonochemistry. 2014;21(3):1044-9.10.1016/j.ultsonch.2013.10.021
Matiz Melo GE, Fuentes López K, León Méndez G. Microencapsulación de aceite esencial de tomillo (Thymus vulgaris) en matrices poliméricas de almidón de ñame (Dioscorea rotundata) modificado. Revista Colombiana de Ciencias Químico Farmacéuticas. 2016;44(2):189-207.10.15446/rcciquifa.v44n2.56293
Parra-Huertas R. Microencapsulación de alimentos. Revista Facultad Nacional de Agronomía. 2010;63:5669-84
Ramírez Botero CM, Gómez Ramírez BD, Martínez Galán JP, Martínez Galán JP, Cardona Zuleta LM. Perfil de ácidos grasos en aceites de cocina de mayor venta en Medellín-Colombia. Perspectivas en Nutrición Humana. 2014;16(2).10.17533/udea.penh.v16n2a05
Ganesan K, Sukalingam K, Xu B. Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases- A critical review. Trends in Food Science & Technology. 2018;71:132-54.https://doi.org/10.1016/j.tifs.2017.11.003
Feng W, Qin C, Abdelrazig S, Bai Z, Raji M, Darwish R, et al. Vegetable oils composition affects the intestinal lymphatic transport and systemic bioavailability of co-administered lipophilic drug cannabidiol. International Journal of Pharmaceutics. 2022;624:121947.https://doi.org/10.1016/j.ijpharm.2022.121947
Aydınkaptan E, Barutçu Mazı I. Monitoring the physicochemical features of sunflower oil and French fries during repeated microwave frying and deep-fat frying. Grasas y Aceites. 2017;68(3):e202.10.3989/gya.1162162
Guerrero-Esperanza M, Wrobel K, Wrobel K, Ordaz-Ortiz JJ. Determination of fatty acids in vegetable oils by GC-MS, using multiple-ion quantification (MIQ). Journal of Food Composition and Analysis. 2023;115:104963.https://doi.org/10.1016/j.jfca.2022.104963
Mukhametov A, Mamayeva L, Kazhymurat A, Akhlan T, Yerbulekova M. Study of vegetable oils and their blends using infrared reflectance spectroscopy and refractometry. Food Chemistry: X. 2023;17:100386.https://doi.org/10.1016/j.fochx.2022.100386
Malvano F, Laudisio M, Albanese D, d’Amore M, Marra F. Olive Oil-Based Oleogel as Fat Replacer in a Sponge Cake: A Comparative Study and Optimization. Foods. 2022;11(17):2643
Banaś K, Piwowar A, Harasym J. The potential of rapeseed (canola) oil nutritional benefits wide spreading via oleogelation. Food Bioscience. 2023;56:103162.https://doi.org/10.1016/j.fbio.2023.103162
Tao J, Liu L, Ma Q, Ma KY, Chen Z-Y, Ye F, et al. Effect of γ-oryzanol on oxygen consumption and fatty acids changes of canola oil. LWT. 2022;160:113275.https://doi.org/10.1016/j.lwt.2022.113275
Eskin MNA, Iassonova DR, Rempel CB. Chapter 4 - High-oleic canola oil. In: Flider FJ, editor. High Oleic Oils: AOCS Press; 2022. p. 89-108.
ISO856. ISO 856:2006 Oil of peppermint (Mentha x piperita L.). Switzerland: International Organization for Standardization (ISO); 2006. p. 12.
Paulino BN, Silva GNS, Araújo FF, Néri-Numa IA, Pastore GM, Bicas JL, et al. Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends in Food Science & Technology. 2022;128:188-201.https://doi.org/10.1016/j.tifs.2022.08.006
Guerra ICD, de Oliveira PDL, de Souza Pontes AL, Lúcio ASSC, Tavares JF, Barbosa-Filho JM, et al. Coatings comprising chitosan and Mentha piperita L. or Mentha×villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit. International Journal of Food Microbiology. 2015;214:168-78.https://doi.org/10.1016/j.ijfoodmicro.2015.08.009
Nair B. Final report on the safety assessment of Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water. Int J Toxicol. 2001;20 Suppl 3:61-73
Tisserand R, Young R. 13 - Essential oil profiles. In: Tisserand R, Young R, editors. Essential Oil Safety (Second Edition). St. Louis: Churchill Livingstone; 2014. p. 187-482.
Alvarez-Ramirez J, Vernon-Carter EJ, Carrera-Tarela Y, Garcia A, Roldan-Cruz C. Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. LWT. 2020;130:109701.https://doi.org/10.1016/j.lwt.2020.109701
Alongi M, Lucci P, Clodoveo ML, Schena FP, Calligaris S. Oleogelation of extra virgin olive oil by different oleogelators affects the physical properties and the stability of bioactive compounds. Food Chemistry. 2022;368:130779.https://doi.org/10.1016/j.foodchem.2021.130779
Kim M, Hwang H-S, Jeong S, Lee S. Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT. 2022;155:112972.https://doi.org/10.1016/j.lwt.2021.112972
Yu D, Li N, Wang R, Xue W, Wang D, Elfalleh W, et al. Preparation of conjugated linoleic acid-rich oleogel emulsions by dynamic high-pressure microfluidization technology. Journal of Food Engineering. 2024;362:111755.https://doi.org/10.1016/j.jfoodeng.2023.111755
Da Silva SL, Amaral JT, Ribeiro M, Sebastião EE, Vargas C, de Lima Franzen F, et al. Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Science. 2019;149:141-8.https://doi.org/10.1016/j.meatsci.2018.11.020
Roufegarinejad L, Ahmadi G, İcyer NC, Saıd Toker O, Habibzadeh Khiabani A. Fabrication of healthier monoglyceride-based oleogel containing linseed-sunflower oil and its application as shortening in cake formulation. International Journal of Food Science & Technology. 2024;59(1):299-308.https://doi.org/10.1111/ijfs.16809
Salama HH, Hashim AF. A functional spreadable canola and milk proteins oleogels as a healthy system for candy gummies. Scientific Reports. 2022;12(1):12619.10.1038/s41598-022-16809-9
Moon K, Choi KO, Jeong S, Kim YW, Lee S. Solid Fat Replacement with Canola Oil-Carnauba Wax Oleogels for Dairy-Free Imitation Cheese Low in Saturated Fat. Foods. 2021;10(6).10.3390/foods10061351
Aceptado 2025-03-25
Publicado 2025-04-01

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores ceden los derechos patrimoniales a la revista y a la Universidad del Valle sobre los manuscritos aceptados, pero podrán hacer los reusos que consideren pertinentes por motivos profesionales, educativos, académicos o científicos, de acuerdo con los términos de la licencia que otorga la revista a todos sus artículos.
Los artículos serán publicados bajo la licencia Creative Commons 4.0 BY-NC-SA (de atribución, no comercial, sin obras derivadas).