Main Article Content

Authors

Introduction: this study examines the integration of the STEAM (Science, Technology, Engineering, Arts, and Mathematics) approach and technological tools in teaching linear algebra, a fundamental subject in engineering education. Since a deep understanding of algebraic concepts is crucial for academic and professional success in engineering, the research explores how these innovative methodologies can enhance learning in this field.
Objetive: the aim of this study was to assess the effectiveness of integrating the STEAM approach and technological tools in teaching linear algebra to engineering students, with the goal of improving their academic performance and satisfaction with the implemented teaching strategies.
Methodology: a sequential explanatory mixed-methods design was used, combining standardized summative assessments (α = 0.85) and open-ended evaluations, along with qualitative data from the Course Experience Questionnaire (CEQ, α = 0.92). The participants were 29 engineering students selected through purposive sampling.
Results: the results revealed a significant improvement in students’ academic performance, with a statistically significant difference (p < 0.01) and a large effect size (d = 0.78). Additionally, the participants expressed high satisfaction with the teaching strategies implemented, according to the course experience questionnaire results.
Conclusions: the integration of the STEAM approach and technological tools in teaching linear algebra shows promise in improving both conceptual understanding and practical application of the concepts in engineering contexts. The findings suggest that these methodologies can be an effective means of enhancing both academic performance and student satisfaction in technical disciplines.

1.
Conde-Carmona RJ, Díaz S, Gómez JL, Jiménez-Consuegra MA, Ospino Buelvas Y. Integration of the steam approach in teaching linear algebra to engineering students: (This article has been RETRACTED 4-12-2024). inycomp [Internet]. 2024 Nov. 20 [cited 2024 Dec. 11];26(3):e-21414375. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/14375

Bai H, Gao JH, Li W, Wang K, Guo MF. Detection of High-Impedance Fault in Distribution Networks Using Frequency-Band Energy Curve. IEEE Sens J [Internet]. 2024 Jan 1;24(1):427–36. Available from: https://ieeexplore.ieee.org/document/10316233/ DOI: https://doi.org/10.1109/JSEN.2023.3330970

Sierpinska, A. On some aspects of students’ thinking in linear algebra. In J.-L. Dorier (Ed.), The teaching of linear algebra in question. Springer, (2000) (pp. 209-246) https://doi.org/10.1007/0-306-47231-7_7 DOI: https://doi.org/10.1007/0-306-47224-4_8

Stewart, S., & Thomas, M. O. J. Linear algebra: challenges for students understanding concepts and notation. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (2009) (Vol. 1, pp. 145-152). PME.

Conde-Carmona, R. J., & Bolívar, N. Modelo didáctico para la formación docente, en el pensamiento matemático, tecnológico y pedagógico en el marco de la resolución de problemas y la planificación. Revista De Gestão E Secretariado, (2023)14(12), 21796-21817. https://doi.org/10.7769/gesec.v14i12.3186 DOI: https://doi.org/10.7769/gesec.v14i12.3186

Hillel, J. Modes of description and the problem of representation in linear algebra. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (2001) (pp. 191-207). Springer. https://doi.org/10.1007/0-306-47231-7_12 DOI: https://doi.org/10.1007/0-306-47224-4_7

Wawro, M., Sweeney, G., & Rabin, J. Subspace in linear algebra: investigating students’ concept imag-es and interactions with the formal definition. Educational Studies in Mathematics, (2012) 78(1), 1-19. https://doi.org/10.1007/s10649-011-9307-8 DOI: https://doi.org/10.1007/s10649-011-9307-4

Acendra Pertuz, J. M., & Conde Carmona, R. J. STEAM para el desarrollo del pensamiento matemático: una revisión documental. Praxis, (2024) 20(2). https://doi.org/10.21676/23897856.5783

Soto-Johnson, H., Oates, G., & Huntington-Klein, N. Effectiveness of a purposeful technology-enhanced linear algebra curriculum. Primus, (2020) 30(1), 31-57. https://doi.org/10.1080/10511970.2018.1536890

Kanwal, N., Salman, S., Eng, T. H., & Parham, J. N. Undergraduate students’ interaction and perfor-mance in linear algebra: Comparing physical manipulatives and virtual manipulatives. International Journal of Mathematical Education in Science and Technology, (2022) 53(2), 291-308. https://doi.org/10.1080/0020739X.2020.1759544

Anabousy, A., & Daher, W. Pre-service teachers’ design of STEAM learning units: STEAM capabilities’ analysis. Journal of Technology and Science Education, (2022) 12(2), 529-546. https://doi.org/10.3926/jotse.1621 DOI: https://doi.org/10.3926/jotse.1621

Radloff, J., & Guzey, S. Investigating preservice STEAM teacher conceptions of STEAM education. Journal of Science Education and Technology, (2016) 25(5), 759-774. https://doi.org/10.1007/s10956-016-9633-5 DOI: https://doi.org/10.1007/s10956-016-9633-5

Rivera Figueroa, A. Integrated STEAM pedagogies: A meta-analysis [Unpublished doctoral disserta-tion]. Arizona State University, (2019) https://repository.asu.edu/items/58497

Lay, D. C. Linear algebra and its applications. (2016) (5th ed.) Pearson

Dorier, J.-L., y Sierpinska A. Research into the teaching and learning of linear algebra. En D. Holton (Ed.), The Teaching and Learning of Mathematics at University Level: An ICMI Study (pp. 255-273) (2001) Kluwer. http://doi.org/10.1007/0-306-47231-7_24 DOI: https://doi.org/10.1007/0-306-47231-7_24

Harel, G. Three principles of learning and teaching mathematics: Particular reference to linear alge-bra-Old and new observations. In J.-L. Dorier (Ed.), On the teaching of linear algebra (2000) (pp. 177-189). Springer. DOI: https://doi.org/10.1007/0-306-47224-4_6

Possani, E., Trigueros, M., Preciado, J. G., & Lozano, M. D. Use of models in the teaching of linear alge-bra. Linear Algebra and its Applications, (2010) 432(8), 2125-2140. https://doi.org/10.1016/j.laa.2009.05.004 DOI: https://doi.org/10.1016/j.laa.2009.05.004

Hmelo-Silver, C. E. Problem-based learning: What and how do students learn?. Educational Psycholo-gy Review, (2004) 16, 235-266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3 DOI: https://doi.org/10.1023/B:EDPR.0000034022.16470.f3

Henriksen, D. Full STEAM ahead: Creativity in excellent STEAM teaching practices. The STEAM Jour-nal, (2014) 1(2), Article 15. https://doi.org/10.5642/steam.20140102.15 DOI: https://doi.org/10.5642/steam.20140102.15

Mendible, A., & Ortiz, J. Modelización matemática en la formación de ingenieros. La importancia del contexto. Enseñanza de la Matemática, (2007) 12(16), 133-150.

Karakok, G., Savic, M., Tang, G., & El Turkey, H. Mathematicians’ views on undergraduate students’ creativity. In CERME 9-Ninth Congress of the European Society for Research in Mathematics Educa-tion. (2015) (pp. 1003-1009).

Wanko, J. J. Teaching inductive reasoning with puzzles. The Mathematics Teacher, (2017) 110(7), 514-519. https://doi.org/10.5951/mathteacher.110.7.0514 DOI: https://doi.org/10.5951/mathteacher.110.7.0514

Klingbeil, N. W., Mercer, R. E., Rattan, K. S., Raymer, M. L., & Reynolds, D. B. The WSU model for engi-neering mathematics education. In Proceedings of the 2004 American Society for Engineering Educa-tion Annual Conference & Exposition. (2004) https://peer.asee.org/13342

Alves, A. C., Sousa, R. M., Fernandes, S., Cardoso, E., Carvalho, M. A., Figueiredo, J., & Pereira, R. M. Teacher’s experiences in PBL: implications for practice. European Journal of Engineering Education, (2016) 41(2), 123-141. https://doi.org/10.1080/03043797.2015.1023782 DOI: https://doi.org/10.1080/03043797.2015.1023782

Alpers, B. A., Demlova, M., Fant, C. H., Gustafsson, T., Lawson, D., Mustoe, L., Olsen-Lehtonen, B. A., Robinson, C. L., & Velichova, D. A framework for mathematics curricula in engineering education: a report of the mathematics working group. European Society for Engineering Education (SEFI). (2013)

Hernández-Sampieri, R., & Mendoza, C. Metodología de la investigación: las rutas cuantitativa, cuali-tativa y mixta. McGraw-Hill. (2020)

Tashakkori, A., & Teddlie, C. (Eds.). Handbook of mixed methods in social & behavioral research (2nd ed.). SAGE Publications. (2010)

Creswell, J. W., & Plano Clark, V. L. Designing and conducting mixed methods research (2017) (3rd ed.). SAGE Publications.

Etikan, I., Musa, S. A., & Alkassim, R. S. Comparison of convenience sampling and purposive sam-pling. American Journal of Theoretical and Applied Statistics, (2016) 5(1), 1-4. https://doi.org/10.11648/j.ajtas.20160501.11 DOI: https://doi.org/10.11648/j.ajtas.20160501.11

Received 2024-08-09
Accepted 2024-09-16
Published 2024-11-20