Main Article Content

Authors

Introduction: electrical networks are sensitive to faults, and among the most common types, one of the most difficult to detect is the High Impedance Fault (HIF). This type of fault can go unnoticed due to its particular characteristics, such as the ground resistance and voltage drops in the electric arc.
Objective: to propose a stochastic hybrid model for simulating high impedance faults, using the Ornstein-Uhlenbeck process to describe the random nature of these faults. The model focuses on key HIF parameters: ground resistance and voltage drops in the electric arc.
Methodology: the Ornstein-Uhlenbeck process is used to model the randomness of high impedance faults. Simulations are conducted to compare the numerical results with experimental signals reported in the literature. Additionally, both continuous and discrete wavelet transforms are applied to the line current signal to analyze fault characteristics.
Results: the simulations show a qualitative similarity between the numerical results obtained and the experimental signals available in the literature. Both continuous and discrete wavelet transforms reveal typical features of high impedance faults, validating the effectiveness of the proposed model.
Conclusions: the proposed stochastic hybrid model for high impedance faults is effective in simulating this type of fault, and wavelet transform analyses demonstrate its ability to identify distinctive characteristics of HIFs, which can improve the detection and diagnosis of these faults in electrical networks.

1.
Mina-Casaran JD, Herrera W, Gallo G. Wavelet Analysis of a High Impedance Fault Modeled as a Stochastic Hybrid SystemProducts. inycomp [Internet]. 2024 Nov. 21 [cited 2025 Jan. 22];26(3):e-21614343. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/14343

Bai H, Gao JH, Li W, Wang K, Guo MF. Detection of High-Impedance Fault in Distribution Networks Using Frequency-Band Energy Curve. IEEE Sens J [Internet]. 2024 Jan 1;24(1):427–36. Available from: https://ieeexplore.ieee.org/document/10316233/ DOI: https://doi.org/10.1109/JSEN.2023.3330970

Grimaldi RBG, Chagas TSA, Montalvão J, Brito NSD, dos Santos WC, Ferreira T V. High impedance fault detection based on linear prediction. Electr Power Syst Res [Internet]. 2021 Jan;190(August 2020):106846. Available from: https://doi.org/10.1016/j.epsr.2020.106846 DOI: https://doi.org/10.1016/j.epsr.2020.106846

Gomes DPS, Ozansoy C. High-impedance faults in power distribution systems: A narrative of the field’s developments. ISA Trans [Internet]. 2021 Dec;118(xxxx):15–34. Available from: https://doi.org/10.1016/j.isatra.2021.02.018 DOI: https://doi.org/10.1016/j.isatra.2021.02.018

Huaquisaca Paye JC, Vieira JPA, Tabora JM, Leão AP, Cordeiro MAM, Junior GC, et al. High Impedance Fault Models for Overhead Distribution Networks: A Review and Comparison with MV Lab Experiments. Energies [Internet]. 2024 Feb 27;17(5):1125. Available from: https://www.mdpi.com/1996-1073/17/5/1125 DOI: https://doi.org/10.3390/en17051125

Mahari A, Seyedi H. High impedance fault protection in transmission lines using a WPT-based algorithm. Int J Electr Power Energy Syst [Internet]. 2015 May;67:537–45. Available from: http://dx.doi.org/10.1016/j.ijepes.2014.12.022 DOI: https://doi.org/10.1016/j.ijepes.2014.12.022

Langeroudi AT, Abdelaziz MMA. Preventative high impedance fault detection using distribution system state estimation. Electr Power Syst Res [Internet]. 2020 Sep;186(November 2019):106394. Available from: https://doi.org/10.1016/j.epsr.2020.106394 DOI: https://doi.org/10.1016/j.epsr.2020.106394

Aljohani A, Habiballah I. High-Impedance Fault Diagnosis: A Review. Energies [Internet]. 2020 Dec 5;13(23):6447. Available from: https://www.mdpi.com/1996-1073/13/23/6447 DOI: https://doi.org/10.3390/en13236447

Ghaderi A, Ginn HL, Mohammadpour HA. High impedance fault detection: A review. Electr Power Syst Res [Internet]. 2017 Feb;143:376–88. Available from: http://dx.doi.org/10.1016/j.epsr.2016.10.021 DOI: https://doi.org/10.1016/j.epsr.2016.10.021

Makkawi B, Usta Ö. High Impedance Fault Detection in Medium Voltage Distribution Systems Using Wavelet Transform. Turkish J Electr Power Energy Syst [Internet]. 2024 Mar 5;4(1):40–9. Available from: https://tepesjournal.org/en/high-impedance-fault-detection-in-medium-voltage-distribution-systems-u-wavelet-transform-1361 DOI: https://doi.org/10.5152/tepes.2024.24001

Bhongade S, Golhani S. HIF detection using wavelet transform, travelling wave and support vector machine. In: 2016 International Conference on Electrical Power and Energy Systems (ICEPES) [Internet]. IEEE; 2016. p. 151–6. Available from: http://ieeexplore.ieee.org/document/7915922/ DOI: https://doi.org/10.1109/ICEPES.2016.7915922

Sekar K, Mohanty NK. Data mining-based high impedance fault detection using mathematical morphology. Comput Electr Eng [Internet]. 2018 Jul;69(May):129–41. Available from: https://doi.org/10.1016/j.compeleceng.2018.05.010 DOI: https://doi.org/10.1016/j.compeleceng.2018.05.010

Sedighi A. A New Model for High Impedance Fault in Electrical Distribution Systems. Int J Sci Res Comput Sci Eng Res [Internet]. 2014;2(4):6–12. Available from: www.isroset.org

Emanuel AE, Cyganski D, Orr JA, Shiller S, Gulachenski EM. High impedance fault arcing on sandy soil in 15 kV distribution feeders: contributions to the evaluation of the low frequency spectrum. IEEE Trans Power Deliv [Internet]. 1990 Apr;5(2):676–86. Available from: http://ieeexplore.ieee.org/document/53070/ DOI: https://doi.org/10.1109/61.53070

Sheng Y, Rovnyak SM. Decision Tree-Based Methodology for High Impedance Fault Detection. IEEE Trans Power Deliv [Internet]. 2004 Apr;19(2):533–6. Available from: http://ieeexplore.ieee.org/document/1278405/ DOI: https://doi.org/10.1109/TPWRD.2003.820418

Vasca F, Iannelli L. Dynamics and Control of Switched Electronic Systems. Springer, editor. 2012. DOI: https://doi.org/10.1007/978-1-4471-2885-4

Pola G, Bujorianu ML, Lygeros J, Di Benedetto MD. Stochastic Hybrid Models: An Overview. IFAC Proc Vol [Internet]. 2003 Jun;36(6):45–50. Available from: http://dx.doi.org/10.1016/S1474-6670(17)36405-4 DOI: https://doi.org/10.1016/S1474-6670(17)36405-4

Hu J, Lygeros J, Sastry S. Toward Stochastic Hybrid System. Available from: http://sec.eecs.berkeley.edu/papers/99/StoHyb/StoHyb.pdf

Lygeros J, Prandini M. Stochastic Hybrid Systems: A Powerful Framework for Complex, Large Scale Applications. Eur J Control [Internet]. 2010 Jan;16(6):583–94. Available from: http://dx.doi.org/10.3166/ejc.16.583-594 DOI: https://doi.org/10.3166/ejc.16.583-594

Iurinic LU, Herrera-Orozco AR, Ferraz RG, Bretas AS. Distribution Systems High-Impedance Fault Location: A Parameter Estimation Approach. IEEE Trans Power Deliv [Internet]. 2016 Aug;31(4):1806–14. Available from: http://ieeexplore.ieee.org/document/7355370/ DOI: https://doi.org/10.1109/TPWRD.2015.2507541

Suteerawatananon S, Chompusri Y, Charbkaew N, Bunyagul T. Design of a Low Cost Microcontroller Based High Impedance Fault Detector. In: 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) [Internet]. IEEE; 2018. p. 552–5. Available from: https://ieeexplore.ieee.org/document/8619950/ DOI: https://doi.org/10.1109/ECTICon.2018.8619950

Dash DK, Biswal T, Swain SC. Optimum Relaying Scheme of High Impedance Fault Detection in Micro-Grid. In: 2020 National Conference on Emerging Trends on Sustainable Technology and Engineering Applications (NCETSTEA) [Internet]. IEEE; 2020. p. 1–6. Available from: https://ieeexplore.ieee.org/document/9119919/ DOI: https://doi.org/10.1109/NCETSTEA48365.2020.9119919

Nayak PK, Sarwagya K, Biswal T. A novel high impedance fault detection technique in distribution systems with distributed generators. In: 2016 National Power Systems Conference (NPSC) [Internet]. IEEE; 2016. p. 1–6. Available from: http://ieeexplore.ieee.org/document/7858855/ DOI: https://doi.org/10.1109/NPSC.2016.7858855

Yong H, Minyou C, Jinqian Z. High impedance fault identification method of the distribution network based on discrete wavelet transformation. In: 2011 International Conference on Electrical and Control Engineering [Internet]. IEEE; 2011. p. 2262–5. Available from: http://ieeexplore.ieee.org/document/6057329/ DOI: https://doi.org/10.1109/ICECENG.2011.6057329

Gautam S, Brahma. Detection of High Impedance Fault in Power Distribution Systems Using Mathematical Morphology. IEEE Trans Power Syst [Internet]. 2013 May;28(2):1226–34. Available from: http://ieeexplore.ieee.org/document/6311450/ DOI: https://doi.org/10.1109/TPWRS.2012.2215630

Zamanan N, Sykulski J. The evolution of high impedance fault modeling. In: 2014 16th International Conference on Harmonics and Quality of Power (ICHQP) [Internet]. IEEE; 2014. p. 77–81. Available from: http://ieeexplore.ieee.org/document/6842852/ DOI: https://doi.org/10.1109/ICHQP.2014.6842852

Cui Q, Weng Y. Enhance High Impedance Fault Detection and Location Accuracy via -PMUs. IEEE Trans Smart Grid [Internet]. 2020 Jan;11(1):797–809. Available from: https://ieeexplore.ieee.org/document/8755317/ DOI: https://doi.org/10.1109/TSG.2019.2926668

Khoshkhoo H, Sadeghi SHH, Moini R, Talebi HA. An efficient power control scheme for electric arc furnaces using online estimation of flexible cable inductance. Comput Math with Appl [Internet]. 2011 Dec;62(12):4391–401. Available from: http://dx.doi.org/10.1016/j.camwa.2011.10.009 DOI: https://doi.org/10.1016/j.camwa.2011.10.009

Nikolaev AA, Tulupov PG, Savinov DA. Statistical analysis of random fluctuations of currents in the electric arc steel-making furnace for different melting techniques. In: 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) [Internet]. IEEE; 2017. p. 1–7. Available from: http://ieeexplore.ieee.org/document/8076206/ DOI: https://doi.org/10.1109/ICIEAM.2017.8076206

Toda M. On the Theory of the Brownian Motion. J Phys Soc Japan [Internet]. 1958 Nov;13(11):1266–80. Available from: https://journals.jps.jp/doi/10.1143/JPSJ.13.1266 DOI: https://doi.org/10.1143/JPSJ.13.1266

Iula A, Cerro D, Pappalardo M, Lamberti N. FEA and experimental characterization of langevin transducers with comparable longitudinal and lateral dimensions. In: IEEE Ultrasonics Symposium, 2004 [Internet]. IEEE; 2004. p. 650–3. Available from: http://ieeexplore.ieee.org/document/1417808/ DOI: https://doi.org/10.1109/ULTSYM.2004.1417808

Vasicek O. An equilibrium characterization of the term structure. J financ econ [Internet]. 1977 Nov;5(2):177–88. Available from: https://linkinghub.elsevier.com/retrieve/pii/0304405X77900162 DOI: https://doi.org/10.1016/0304-405X(77)90016-2

Bibbona E, Panfilo G, Tavella P. The Ornstein–Uhlenbeck process as a model of a low pass filtered white noise. Metrologia [Internet]. 2008 Dec;45(6):S117–26. Available from: https://iopscience.iop.org/article/10.1088/0026-1394/45/6/S17 DOI: https://doi.org/10.1088/0026-1394/45/6/S17

Svoboda S. The Vasicek Model. In: Interest Rate Modelling [Internet]. London: Palgrave Macmillan UK; 2004. p. 3–17. Available from: http://link.springer.com/10.1057/9781403946027_1 DOI: https://doi.org/10.1057/9781403946027_1

Rößler A. Runge–Kutta Methods for the Strong Approximation of Solutions of Stochastic Differential Equations. SIAM J Numer Anal [Internet]. 2010 Jan 1;48(3):922–52. Available from: http://epubs.siam.org/doi/10.1137/09076636X DOI: https://doi.org/10.1137/09076636X

Maximov S, Torres V, Ruiz HF, Guardado JL. Analytical Model for High Impedance Fault Analysis in Transmission Lines. Math Probl Eng [Internet]. 2014;2014:1–10. Available from: http://www.hindawi.com/journals/mpe/2014/837496/ DOI: https://doi.org/10.1155/2014/837496

Elkalashy NI, Lehtonen M, Darwish HA, Izzularab MA, Taalab AI. Modeling and Experimental Verification of a High Impedance Arcing Fault in MV Networks. In: 2006 IEEE PES Power Systems Conference and Exposition [Internet]. IEEE; 2006. p. 1950–6. Available from: http://ieeexplore.ieee.org/document/4076038/ DOI: https://doi.org/10.1109/PSCE.2006.296225

Sedighi AR, Haghifam MR. Simulation of high impedance ground fault In electrical power distribution systems. In: 2010 International Conference on Power System Technology [Internet]. IEEE; 2010. p. 1–7. Available from: http://ieeexplore.ieee.org/document/5666061/ DOI: https://doi.org/10.1109/POWERCON.2010.5666061

Costa FB, Souza BA, Brito NSD, Silva JACB, Santos WC. Real-Time Detection of Transients Induced by High-Impedance Faults Based on the Boundary Wavelet Transform. IEEE Trans Ind Appl [Internet]. 2015 Nov;51(6):5312–23. Available from: http://ieeexplore.ieee.org/document/7110357/ DOI: https://doi.org/10.1109/TIA.2015.2434993

Embrechts P, Herzberg AM, Kalbfleisch HK, Traves WN, Robertson Whitla J. An introduction to wavelets with applications to Andrews; plots. J Comput Appl Math [Internet]. 1995 Nov;64(1–2):41–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/0377042795000054 DOI: https://doi.org/10.1016/0377-0427(95)00005-4

Solanki M. Transient protection of transmission line using wavelet transform. In: 7th International Conference on Developments in Power Systems Protection (DPSP 2001) [Internet]. IEE; 2001. p. 299–302. Available from: https://digital-library.theiet.org/content/conferences/10.1049/cp_20010159 DOI: https://doi.org/10.1049/cp:20010159

Received 2024-07-19
Accepted 2024-10-24
Published 2024-11-21