Main Article Content

Authors

Objective: the objective of this study is to conceptualize a network of heat exchangers designed to minimize energy waste and enhance the overall efficiency of the sugar production system.
Methods: a systematic approach was adopted to analyze energy flows within the plant, identifying key areas for improvement, particularly in heating and evaporation processes. Heat accumulations in cascades and graphical analyses of composite curves were developed using specialized software to optimize heat exchange.
Results: the results indicate a significant potential for energy savings, reducing the consumption of cooling and heating utilities in the plant by 7% and 30%, respectively. The developed computational tool allows for energy integration from simple processes to those with hundreds of streams. The pinch technology concept estimated an annual total savings of $464,850.08 in the selected process.
Conclusion: this study demonstrates that thermal integration through pinch analysis not only improves energy efficiency in the sugar industry but also contributes to a considerable reduction in operational costs and environmental impact, providing a valuable tool for the industry’s sustainability and competitiveness.

1.
Vidal Medina JR, Rodríguez Valencia AF, Pérez Marín JA, López Castrillón YU. Thermal Integration in Sugar Production Using Pinch Analysis. inycomp [Internet]. 2024 Oct. 9 [cited 2024 Oct. 15];26(3):e-21114315. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/14315

Julian Andrés Perez Marin. Análisis y evaluación de integración térmica de las corrientes de proceso en una planta de producción de azúcar para incrementar su eficiencia utilizando la metodología Pinch. Universidad Autónoma de Occidente. 2017.

Asocaña. Un dulce sabor que se trasforma. Informe anual 2021 – 2022 [Internet]. Sector agroindustrial de la caña. 2022. Available from: http://www.asocana.org/documentos/672022-B663EF18-00FF00,000A000,878787,C3C3C3,0F0F0F,B4B4B4,FF00FF,FFFFFF,2D2D2D,A3C4B5.pdf

Palacios-Bereche MC, Palacios-Bereche R, Ensinas A V., Gallego AG, Modesto M, Nebra SA. Brazilian sugar cane industry – A survey on future improvements in the process energy management. Energy. 2022;259(June):1–19.

Dias MOS, Modesto M, Ensinas A V., Nebra SA, Filho RM, Rossell CEV. Improving bioethanol production from sugarcane: Evaluation of distillation, thermal integration and cogeneration systems. Energy [Internet]. 2011;36(6):3691–703. Available from: http://dx.doi.org/10.1016/j.energy.2010.09.024

Oliveira CM, Cruz AJG, Costa CBB. Improving second generation bioethanol production in sugarcane biorefineries through energy integration. Appl Therm Eng [Internet]. 2016;109:819–27. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2014.11.016

Dias MOS, Ensinas A V., Nebra SA, Maciel Filho R, Rossell CEV, Maciel MRW. Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process. Chem Eng Res Des. 2009;87(9):1206–16.

Bonhivers JC, Ortiz PAS, Reddick C, Rossell CEV, Mariano AP, Filho RM. Graphical Analysis of Plant-Wide Heat Cascade for Increasing Energy Efficiency in the Production of Ethanol and Sugar from Sugarcane. Process Integr Optim Sustain. 2021;5(3):335–59.

Svensson E, Harvey S. Pinch Analysis of a Partly Integrated Pulp and Paper Mill. Proc World Renew Energy Congr – Sweden, 8–13 May, 2011, Linköping, Sweden. 2011;57:1521–8.

Safder U, Lim JY, How BS, Ifaei P, Heo SK, Yoo CK. Optimal configuration and economic analysis of PRO-retrofitted industrial networks for sustainable energy production and material recovery considering uncertainties: Bioethanol and sugar mill case study. Renew Energy [Internet]. 2022;182:797–816. Available from: https://doi.org/10.1016/j.renene.2021.10.047

Cortes-Rodríguez EF, Fukushima NA, Palacios-Bereche R, Ensinas A V., Nebra SA. Vinasse concentration and juice evaporation system integrated to the conventional ethanol production process from sugarcane – Heat integration and impacts in cogeneration system. Renew Energy [Internet]. 2018;115(1):474–88. Available from: https://doi.org/10.1016/j.renene.2017.08.036

Molina JBC. Integración energética del proceso de producción de alcohol en la destilería de un ingenio azucarero. Universidad Autónoma de Occidente. 2017.

Hurtado CMR, Rincon RG. Análisis y evaluación de integración térmica de las corrientes de proceso de la unidad de ruptura catalítica de ecopetrol gerencia refinería de cartagena utilizando la metodología Pinch. 2003.

Higa M, Freitas AJ, Bannwart AC, Zemp RJ. Thermal integration of multiple effect evaporator in sugar plant. Appl Therm Eng [Internet]. 2009;29(2–3):515–22. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2008.03.009

Morandin M, Toffolo A, Lazzaretto A, Maréchal F, Ensinas A V., Nebra SA. Synthesis and parameter optimization of a combined sugar and ethanol production process integrated with a CHP system. Energy [Internet]. 2011;36(6):3675–90. Available from: http://dx.doi.org/10.1016/j.energy.2010.10.063

Pina EA, Palacios-Bereche R, Chavez-Rodrigues MF, Ensinas A V., Modesto M, Nebra SA. Thermal integration of different plant configurations of sugar and ethanol production from sugarcane. Chem Eng Trans. 2014;39(Special Issue):1147–52.

Ensinas A V., Nebra SA, Lozano MA, Serra L. Design of evaporation systems and heaters networks in sugar cane factories using a thermoeconomic optimization procedure. Int J Thermodyn. 2007;10(3):97–105.

Raghu Ram J, Banerjee R. Energy and cogeneration targeting for a sugar factory. Appl Therm Eng. 2003;23(12):1567–75.

Neto JNS, Pacheco JG, Sacramento LDA, Kalid R, Magalhães SLF De, Queiroz EM, et al. Energy integration - an example in a retrofit of a petrochemical plant. 2nd Mercosur Congr Chem Eng. 2004;1–10.

Levasseur ZP, Palese V, Marechal F. Energy integration study of a multi-effect evaporator. Ec Polytech Fed Lausanne. 2008;1(1):1–17.

Llerena AC, Ones OP, Cardenas LZ de, Rios JLP de los. Integración energética del proceso de incineración de vinazas concentradas y generación de electricidad. Rev Univ y Soc [Internet]. 2021;13(6):286–94. Available from: https://doi.org/10.1080/09638288.2019.1595750%0Ahttps://doi.org/10.1080/17518423.2017.1368728%0Ahttp://dx.doi.org/10.1080/17518423.2017.1368728%0Ahttps://doi.org/10.1016/j.ridd.2020.103766%0Ahttps://doi.org/10.1080/02640414.2019.1689076%0Ahttps://doi.org/

Chegini S, Dargahi R, Mahdavi A. Modification of Preheating Heat Exchanger Network in Crude Distillation Unit of Arak Refinery Based on Pinch Technology. Proc World Congr Eng Comput Sci. 2008;1(1):1–5.

Balla WH, Rabah AA, Abdallah BK. Pinch Analysis of Sugarcane Refinery Water Integration. Sugar Tech. 2018;20(2):122–34.

Smith R. State of the art in process integration. Appl Therm Eng. 2000;20(15):1337–45.

Linnhoff B, Dunford H, Smith R. Heat integration of distillation columns into overall processes. Chem Eng Sci. 1983;38(8):1175–88.

Klemeš JJ, Kravanja Z. Forty years of Heat Integration: Pinch Analysis (PA) and Mathematical Programming (MP). Curr Opin Chem Eng. 2013;2(4):461–74.

Varbanov PS, Yong JY, Klemeš JJ, Chin HH. Data extraction for heat integration and total site analysis: A review. Chem Eng Trans. 2019;76(1):67–72.

Fu D, Nguyen T, Lai Y, Lin L, Dong Z, Lyu M. Improved pinch-based method to calculate the capital cost target of heat exchanger network via evolving the spaghetti structure towards low-cost matching. J Clean Prod [Internet]. 2022;343(1):1–19. Available from: https://doi.org/10.1016/j.jclepro.2022.131022

Jaramillo Chica, Esteban-Sánchez Cossio JA. Desarrollo de una metodología para síntesis, optimización y diagnóstico de redes de transferencia de calor (HEN) – tratamiento de problemas con corrientes isotérmicas. 2009

Received 2024-07-03
Accepted 2024-09-16
Published 2024-10-09