Contenido principal del artículo

Autores

El estudio de células solares de película delgada basadas en sulfuro de estaño está adquiriendo cada vez más relevancia debido a sus ventajas frente a tecnologías similares, como su bajo coste, toxicidad y el hecho de que sus elementos constitutivos son más abundantes en la corteza terrestre; Además, podrían fabricarse mediante técnicas de vacío muslo como pulverización térmica, pulverización catódica, coevaporación o evaporación térmica. Por otro lado, las Simulaciones permiten modelar el comportamiento de las células solares para comprender los procesos y mejorar la eficiencia del dispositivo. Por lo tanto, en este trabajo, el proceso de simulación se lleva a cabo utilizando modelos matemáticos que representan el comportamiento físico de la célula solar formada por heterounión de varias películas delgadas con configuración ZnO/ZnS/SnS. Se evaluaron dos modelos de radiación, uno utilizando una ecuación teórica y el otro con datos de la radiación incidente. Hasta el día de hoy se han realizado diferentes simulaciones de células solares utilizando principalmente un Simulador de Capacitancia de Células Solares (SCAPS); sin embargo, esta investigación se desarrolló utilizando MATLAB debido a su rendimiento y eficiencia. El espesor óptimo de la capa absorbente se estableció a partir de los resultados obtenidos para voltaje de circuito abierto (Voc), densidad de corriente de cortocircuito (Jsc), factor de llenado y eficiencia de conversión (n).

1.
Rondón Almeyda C, Rojas Rincón CL, Sepúlveda Sepúlveda A, Botero MA, Mantilla MA. Simulación de la variación del grosor de la capa absorbente en celdas solares de SnS utilizando Matlab. inycomp [Internet]. 22 de agosto de 2024 [citado 31 de agosto de 2024];26(3):e-20113982. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13982

Gurevich Y, Meléndez L. Fenómenos de contacto y sus aplicaciones en celdas solares. 1 Ed. México: Fondo de cultura Económica - FCE; 2010. 31–35.

Ullah H, Marí B. Numerical analysis of SnS based polycrystalline solar cells. Superlattices Microstruct. 2014 Aug;72:148–55. DOI: https://doi.org/10.1016/j.spmi.2014.03.042

Gul M, Kotak Y, Muneer T. Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation. 2016 Jul 19;34(4):485–526. DOI: https://doi.org/10.1177/0144598716650552

Caballero R, Condé V, León M. SnS thin films grown by sulfurization of evaporated Sn layers: Effect of sulfurization temperature and pressure. Thin Solid Films. 2016 Aug;612:202–7. DOI: https://doi.org/10.1016/j.tsf.2016.06.018

Javed A, Khan N, Bashir S, Ahmad M, Bashir M. Thickness dependent structural, electrical and optical properties of cubic SnS thin films. Mater Chem Phys. 2020 May;246:122831. DOI: https://doi.org/10.1016/j.matchemphys.2020.122831

Oomae H, Eguchi T, Tanaka K, Yamane M, Ohtsu N. X-ray diffraction and X-ray photoelectron spectroscopy characterization of sulfurized tin thin films deposited by thermal evaporation. Thin Solid Films. 2018 Jan;645:409–16. DOI: https://doi.org/10.1016/j.tsf.2017.11.019

Kutwade V V., Gattu KP, Sonawane ME, Tonpe DA, Mishra MK, Sharma R. Contribution in PCE enhancement: numerical designing and optimization of SnS thin film solar cell. Journal of Nanoparticle Research. 2021 Jul 12;23(7):146. DOI: https://doi.org/10.1007/s11051-021-05259-5

Sanguino P, Kunst M, Ben Mbarek M, Reghima M, Bundaleski N, Teodoro O, et al. A contactless method to study carrier kinetics in SnS thin films. Vacuum. 2023 Mar;209:111784. DOI: https://doi.org/10.1016/j.vacuum.2022.111784

Andrade-Arvizu JA, Courel-Piedrahita M, Vigil-Galán O. SnS-based thin film solar cells: perspectives over the last 25 years. Journal of Materials Science: Materials in Electronics. 2015 Jul 14;26(7):4541–56. DOI: https://doi.org/10.1007/s10854-015-3050-z

Kuang H, Xiao Y. Numerical simulation of Cu2Te based thin film solar cell with Cu2O HTL for high efficiency. Micro and Nanostructures. 2024 Apr;188:207790. DOI: https://doi.org/10.1016/j.micrna.2024.207790

Hafaifa L, Maache M, Allam Z, Zebeir A. Simulation and performance analysis of CdTe thin film solar cell using different Cd-free zinc chalcogenide-based buffer layers. Results in Optics. 2024 Feb;14:100596. DOI: https://doi.org/10.1016/j.rio.2023.100596

Oublal E, Al-Hattab M, Ait Abdelkadir A, Sahal M, Kumar N. Photovoltaic efficacy of CNGS as BSF and second absorber for CIGS thin film solar cells- numerical approach by SCAPS-1D framework. Materials Science and Engineering: B. 2024 Jul;305:117401. DOI: https://doi.org/10.1016/j.mseb.2024.117401

Chouk R, Aguir C, Tala-Ighil R, Al-Hada NM, Al-Asbahi BA, Khalfaoui M. Numerical simulation and optimal design of perovskite solar cell based on sensitized zinc oxide electron-transport layer. Multiscale and Multidisciplinary Modeling, Experiments and Design. 2024 Mar 2; DOI: https://doi.org/10.1007/s41939-024-00376-9

Shamardin A, Kurbatov D, Volobuev V. Analysis of Spray Deposited Cu2ZnSnXGe1-xS4 Thin Film Solar Cells: Model Creation in SCAPS-1D and Numerical Simulation of Their Performance. In: 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). Sumy, Ukraine: IEEE; 2020. p. 01TFC20-1-01TFC20-4. DOI: https://doi.org/10.1109/NAP51477.2020.9309699

Chargui T, Lmai F, AL-Hattab M, Bajjou O, Rahmani K. Experimental and numerical study of the CIGS/CdS heterojunction solar cell. Opt Mater (Amst). 2023 Jun;140:113849. DOI: https://doi.org/10.1016/j.optmat.2023.113849

Garain R, Basak A, Singh UP. Study of thickness and temperature dependence on the performance of SnS based solar cell by SCAPS-1D. Mater Today Proc. 2021;39(5):1833–7. DOI: https://doi.org/10.1016/j.matpr.2020.06.185

Badyakar S, Das C. Numerical simulations on a-Si:H/SnS/ZnSe based solar cells. Mater Today Proc. 2022;62(8):5275–82. DOI: https://doi.org/10.1016/j.matpr.2022.03.309

Oublal E, Sahal M, Abdelkadir AA. New theoretical analysis of a novel hetero-junction SnS/CdS solar cell with homo-junction P–P+ in the rear face-numerical approach. Current Applied Physics. 2022 Jul;39:230–8. DOI: https://doi.org/10.1016/j.cap.2022.05.008

Gohri S, Madan J, Pandey R. Impact of Glancing Angle Deposition Technique on the Performance of SnS Thin Film Solar Cell: SCAPS-1D simulation. In: 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON). IEEE; 2022. p. 195–8. DOI: https://doi.org/10.1109/EDKCON56221.2022.10032877

Bhattacharjee P, Garain R, Basak A, Singh UP. Numerical modelling and performance evaluation of SnS based heterojunction solar cell with p+-SnS BSF layer. Opt Quantum Electron. 2022 Dec 22;54(12):867. DOI: https://doi.org/10.1007/s11082-022-04274-7

Kumar A, Prabu RT, Das A. Configuration analysis of SnS based solar cells for high-efficiency devices. Opt Quantum Electron. 2022 Aug 13;54(8):521. DOI: https://doi.org/10.1007/s11082-022-03940-0

Boubakri A, Jouidri A, Koumya Y, Rajira A, Almaggoussi A, Abounadi A. An output characteristics simulation of SnS based solar cells. Mater Today Proc. 2022;51(6):2047–52. DOI: https://doi.org/10.1016/j.matpr.2021.07.428

Colinge J, Colinge C. Physics of Semiconductor Devices. Kluwer Academic Publishers; 2006. 1–102.

Size SM, LI Y, NG K. Physics of Semiconductor Devices. 4 ed. A John Wiley and Sons, Inc.; 2021. 1–83.

Benmir A, Aida MS. Analytical Modeling and Simulation of CIGS Solar Cells. Energy Procedia. 2013;36:618–27. DOI: https://doi.org/10.1016/j.egypro.2013.07.071

Acevedo-Luna A, Bernal-Correa R, Montes-Monsalve J, Morales-Acevedo A. Design of thin film solar cells based on a unified simple analytical model. Journal of Applied Research and Technology. 2017 Dec;15(6):599–608. DOI: https://doi.org/10.1016/j.jart.2017.08.002

Botero MA, Mantilla MA, Calderon CL. Simulation of the absorber layer thickness effect on the performance of CuInSe2 solar cells. In: 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). Chicago, IL, USA: IEEE; 2019. p. 0915–9. DOI: https://doi.org/10.1109/PVSC40753.2019.8980631

Arsad AZ, Bahrudin MS, Arzaee NA, Rahman MNA, Chau CF, Abdullah SF, et al. Zinc sulfide thin films deposited by chemical bath: Tuning consideration of structural, optical band gap, and electrical properties for CIGS solar cells application. Ceram Int. 2024 Apr;50(7):11776–86. DOI: https://doi.org/10.1016/j.ceramint.2024.01.082

Ahmed MJ, Saleh AN. Influence of bulk defects in SnS absorber layer on optical and electrical properties of solar cell. J Phys Conf Ser. 2021 Dec 1;2114(1):012044. DOI: https://doi.org/10.1088/1742-6596/2114/1/012044

Cherouana A, Labbani R. Study of CZTS and CZTSSe solar cells for buffer layers selection. Appl Surf Sci. 2017 Dec;424:251–5. DOI: https://doi.org/10.1016/j.apsusc.2017.05.027

Cheraghizade M, Jamali-Sheini F, Shabani P. Annealing temperature of nanostructured SnS on the role of the absorber layer. Mater Sci Semicond Process. 2019 Feb;90:120–8. DOI: https://doi.org/10.1016/j.mssp.2018.10.018

Vallisree S, Thangavel R, Lenka TR. Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device. Journal of Materials Science: Materials in Electronics. 2018 May 9;29(9):7262–72. DOI: https://doi.org/10.1007/s10854-018-8715-y

Minbashi M, Ghobadi A, Ehsani MH, Rezagholipour Dizaji H, Memarian N. Simulation of high efficiency SnS-based solar cells with SCAPS. Solar Energy. 2018 Dec;176:520–5. DOI: https://doi.org/10.1016/j.solener.2018.10.058

Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S. Design and optimization of highly efficient perovskite/homojunction SnS tandem solar cells using SCAPS-1D. Solar Energy. 2022 Apr;236:195–205. DOI: https://doi.org/10.1016/j.solener.2022.01.046

Ahmmed S, Aktar A, Hossain J, Ismail ABMd. Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL. Solar Energy. 2020 Sep;207:693–702. DOI: https://doi.org/10.1016/j.solener.2020.07.003

Echendu OK, Weerasinghe AR, Diso DG, Fauzi F, Dharmadasa IM. Characterization of n-Type and p-Type ZnS Thin Layers Grown by an Electrochemical Method. J Electron Mater. 2013 Apr 24;42(4):692–700. DOI: https://doi.org/10.1007/s11664-012-2393-y

Lin S, Li X, Pan H, Chen H, Li X, Li Y, et al. Numerical analysis of SnS homojunction solar cell. Superlattices Microstruct. 2016 Mar;91:375–82. DOI: https://doi.org/10.1016/j.spmi.2016.01.037

Recibido 2024-04-26
Aceptado 2024-07-22
Publicado 2024-08-22