Simulación de la variación del grosor de la capa absorbente en celdas solares de SnS utilizando Matlab

Publicado: 22-08-2024

Contenido principal del artículo

Autores/as

El estudio de células solares de película delgada basadas en sulfuro de estaño está adquiriendo cada vez más relevancia debido a sus ventajas frente a tecnologías similares, como su bajo coste, toxicidad y el hecho de que sus elementos constitutivos son más abundantes en la corteza terrestre; Además, podrían fabricarse mediante técnicas de vacío muslo como pulverización térmica, pulverización catódica, coevaporación o evaporación térmica. Por otro lado, las Simulaciones permiten modelar el comportamiento de las células solares para comprender los procesos y mejorar la eficiencia del dispositivo. Por lo tanto, en este trabajo, el proceso de simulación se lleva a cabo utilizando modelos matemáticos que representan el comportamiento físico de la célula solar formada por heterounión de varias películas delgadas con configuración ZnO/ZnS/SnS. Se evaluaron dos modelos de radiación, uno utilizando una ecuación teórica y el otro con datos de la radiación incidente. Hasta el día de hoy se han realizado diferentes simulaciones de células solares utilizando principalmente un Simulador de Capacitancia de Células Solares (SCAPS); sin embargo, esta investigación se desarrolló utilizando MATLAB debido a su rendimiento y eficiencia. El espesor óptimo de la capa absorbente se estableció a partir de los resultados obtenidos para voltaje de circuito abierto (Voc), densidad de corriente de cortocircuito (Jsc), factor de llenado y eficiencia de conversión (n).

1.
Simulación de la variación del grosor de la capa absorbente en celdas solares de SnS utilizando Matlab. inycomp. 2024;26(3):e-20113982. doi:10.25100/iyc.v26i3.13982

Gurevich Y, Meléndez L. Fenómenos de contacto y sus aplicaciones en celdas solares. 1 Ed. México: Fondo de cultura Económica - FCE; 2010. 31–35.

Ullah H, Marí B. Numerical analysis of SnS based polycrystalline solar cells. Superlattices Microstruct. 2014 Aug;72:148–55. DOI: https://doi.org/10.1016/j.spmi.2014.03.042

Gul M, Kotak Y, Muneer T. Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation. 2016 Jul 19;34(4):485–526. DOI: https://doi.org/10.1177/0144598716650552

Caballero R, Condé V, León M. SnS thin films grown by sulfurization of evaporated Sn layers: Effect of sulfurization temperature and pressure. Thin Solid Films. 2016 Aug;612:202–7. DOI: https://doi.org/10.1016/j.tsf.2016.06.018

Javed A, Khan N, Bashir S, Ahmad M, Bashir M. Thickness dependent structural, electrical and optical properties of cubic SnS thin films. Mater Chem Phys. 2020 May;246:122831. DOI: https://doi.org/10.1016/j.matchemphys.2020.122831

Oomae H, Eguchi T, Tanaka K, Yamane M, Ohtsu N. X-ray diffraction and X-ray photoelectron spectroscopy characterization of sulfurized tin thin films deposited by thermal evaporation. Thin Solid Films. 2018 Jan;645:409–16. DOI: https://doi.org/10.1016/j.tsf.2017.11.019

Kutwade V V., Gattu KP, Sonawane ME, Tonpe DA, Mishra MK, Sharma R. Contribution in PCE enhancement: numerical designing and optimization of SnS thin film solar cell. Journal of Nanoparticle Research. 2021 Jul 12;23(7):146. DOI: https://doi.org/10.1007/s11051-021-05259-5

Sanguino P, Kunst M, Ben Mbarek M, Reghima M, Bundaleski N, Teodoro O, et al. A contactless method to study carrier kinetics in SnS thin films. Vacuum. 2023 Mar;209:111784. DOI: https://doi.org/10.1016/j.vacuum.2022.111784

Andrade-Arvizu JA, Courel-Piedrahita M, Vigil-Galán O. SnS-based thin film solar cells: perspectives over the last 25 years. Journal of Materials Science: Materials in Electronics. 2015 Jul 14;26(7):4541–56. DOI: https://doi.org/10.1007/s10854-015-3050-z

Kuang H, Xiao Y. Numerical simulation of Cu2Te based thin film solar cell with Cu2O HTL for high efficiency. Micro and Nanostructures. 2024 Apr;188:207790. DOI: https://doi.org/10.1016/j.micrna.2024.207790

Hafaifa L, Maache M, Allam Z, Zebeir A. Simulation and performance analysis of CdTe thin film solar cell using different Cd-free zinc chalcogenide-based buffer layers. Results in Optics. 2024 Feb;14:100596. DOI: https://doi.org/10.1016/j.rio.2023.100596

Oublal E, Al-Hattab M, Ait Abdelkadir A, Sahal M, Kumar N. Photovoltaic efficacy of CNGS as BSF and second absorber for CIGS thin film solar cells- numerical approach by SCAPS-1D framework. Materials Science and Engineering: B. 2024 Jul;305:117401. DOI: https://doi.org/10.1016/j.mseb.2024.117401

Chouk R, Aguir C, Tala-Ighil R, Al-Hada NM, Al-Asbahi BA, Khalfaoui M. Numerical simulation and optimal design of perovskite solar cell based on sensitized zinc oxide electron-transport layer. Multiscale and Multidisciplinary Modeling, Experiments and Design. 2024 Mar 2; DOI: https://doi.org/10.1007/s41939-024-00376-9

Shamardin A, Kurbatov D, Volobuev V. Analysis of Spray Deposited Cu2ZnSnXGe1-xS4 Thin Film Solar Cells: Model Creation in SCAPS-1D and Numerical Simulation of Their Performance. In: 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). Sumy, Ukraine: IEEE; 2020. p. 01TFC20-1-01TFC20-4. DOI: https://doi.org/10.1109/NAP51477.2020.9309699

Chargui T, Lmai F, AL-Hattab M, Bajjou O, Rahmani K. Experimental and numerical study of the CIGS/CdS heterojunction solar cell. Opt Mater (Amst). 2023 Jun;140:113849. DOI: https://doi.org/10.1016/j.optmat.2023.113849

Garain R, Basak A, Singh UP. Study of thickness and temperature dependence on the performance of SnS based solar cell by SCAPS-1D. Mater Today Proc. 2021;39(5):1833–7. DOI: https://doi.org/10.1016/j.matpr.2020.06.185

Badyakar S, Das C. Numerical simulations on a-Si:H/SnS/ZnSe based solar cells. Mater Today Proc. 2022;62(8):5275–82. DOI: https://doi.org/10.1016/j.matpr.2022.03.309

Oublal E, Sahal M, Abdelkadir AA. New theoretical analysis of a novel hetero-junction SnS/CdS solar cell with homo-junction P–P+ in the rear face-numerical approach. Current Applied Physics. 2022 Jul;39:230–8. DOI: https://doi.org/10.1016/j.cap.2022.05.008

Gohri S, Madan J, Pandey R. Impact of Glancing Angle Deposition Technique on the Performance of SnS Thin Film Solar Cell: SCAPS-1D simulation. In: 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON). IEEE; 2022. p. 195–8. DOI: https://doi.org/10.1109/EDKCON56221.2022.10032877

Bhattacharjee P, Garain R, Basak A, Singh UP. Numerical modelling and performance evaluation of SnS based heterojunction solar cell with p+-SnS BSF layer. Opt Quantum Electron. 2022 Dec 22;54(12):867. DOI: https://doi.org/10.1007/s11082-022-04274-7

Kumar A, Prabu RT, Das A. Configuration analysis of SnS based solar cells for high-efficiency devices. Opt Quantum Electron. 2022 Aug 13;54(8):521. DOI: https://doi.org/10.1007/s11082-022-03940-0

Boubakri A, Jouidri A, Koumya Y, Rajira A, Almaggoussi A, Abounadi A. An output characteristics simulation of SnS based solar cells. Mater Today Proc. 2022;51(6):2047–52. DOI: https://doi.org/10.1016/j.matpr.2021.07.428

Colinge J, Colinge C. Physics of Semiconductor Devices. Kluwer Academic Publishers; 2006. 1–102.

Size SM, LI Y, NG K. Physics of Semiconductor Devices. 4 ed. A John Wiley and Sons, Inc.; 2021. 1–83.

Benmir A, Aida MS. Analytical Modeling and Simulation of CIGS Solar Cells. Energy Procedia. 2013;36:618–27. DOI: https://doi.org/10.1016/j.egypro.2013.07.071

Acevedo-Luna A, Bernal-Correa R, Montes-Monsalve J, Morales-Acevedo A. Design of thin film solar cells based on a unified simple analytical model. Journal of Applied Research and Technology. 2017 Dec;15(6):599–608. DOI: https://doi.org/10.1016/j.jart.2017.08.002

Botero MA, Mantilla MA, Calderon CL. Simulation of the absorber layer thickness effect on the performance of CuInSe2 solar cells. In: 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). Chicago, IL, USA: IEEE; 2019. p. 0915–9. DOI: https://doi.org/10.1109/PVSC40753.2019.8980631

Arsad AZ, Bahrudin MS, Arzaee NA, Rahman MNA, Chau CF, Abdullah SF, et al. Zinc sulfide thin films deposited by chemical bath: Tuning consideration of structural, optical band gap, and electrical properties for CIGS solar cells application. Ceram Int. 2024 Apr;50(7):11776–86. DOI: https://doi.org/10.1016/j.ceramint.2024.01.082

Ahmed MJ, Saleh AN. Influence of bulk defects in SnS absorber layer on optical and electrical properties of solar cell. J Phys Conf Ser. 2021 Dec 1;2114(1):012044. DOI: https://doi.org/10.1088/1742-6596/2114/1/012044

Cherouana A, Labbani R. Study of CZTS and CZTSSe solar cells for buffer layers selection. Appl Surf Sci. 2017 Dec;424:251–5. DOI: https://doi.org/10.1016/j.apsusc.2017.05.027

Cheraghizade M, Jamali-Sheini F, Shabani P. Annealing temperature of nanostructured SnS on the role of the absorber layer. Mater Sci Semicond Process. 2019 Feb;90:120–8. DOI: https://doi.org/10.1016/j.mssp.2018.10.018

Vallisree S, Thangavel R, Lenka TR. Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device. Journal of Materials Science: Materials in Electronics. 2018 May 9;29(9):7262–72. DOI: https://doi.org/10.1007/s10854-018-8715-y

Minbashi M, Ghobadi A, Ehsani MH, Rezagholipour Dizaji H, Memarian N. Simulation of high efficiency SnS-based solar cells with SCAPS. Solar Energy. 2018 Dec;176:520–5. DOI: https://doi.org/10.1016/j.solener.2018.10.058

Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S. Design and optimization of highly efficient perovskite/homojunction SnS tandem solar cells using SCAPS-1D. Solar Energy. 2022 Apr;236:195–205. DOI: https://doi.org/10.1016/j.solener.2022.01.046

Ahmmed S, Aktar A, Hossain J, Ismail ABMd. Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL. Solar Energy. 2020 Sep;207:693–702. DOI: https://doi.org/10.1016/j.solener.2020.07.003

Echendu OK, Weerasinghe AR, Diso DG, Fauzi F, Dharmadasa IM. Characterization of n-Type and p-Type ZnS Thin Layers Grown by an Electrochemical Method. J Electron Mater. 2013 Apr 24;42(4):692–700. DOI: https://doi.org/10.1007/s11664-012-2393-y

Lin S, Li X, Pan H, Chen H, Li X, Li Y, et al. Numerical analysis of SnS homojunction solar cell. Superlattices Microstruct. 2016 Mar;91:375–82. DOI: https://doi.org/10.1016/j.spmi.2016.01.037

Downloads

Download data is not yet available.