Use of Model-Driven Architecture in the storage of PM 2.5 and public health data
Main Article Content
Introduction: This paper addresses the storage of data on health events and PM2.5 particles in the city of Medellín, Colombia. The consolidation of data from heterogeneous sources poses a significant challenge in this context.
Objective: The aim of this study is to propose a metamodel that facilitates the integration and storage of these data using a model-based approach.
Methods: A modeled approach was developed to identify common aspects for building a data warehouse. An abstraction layer was defined over the conceptual models of particulate matter and health events.
Results: The main result was the creation of a data warehouse prototype that allows for the efficient consolidation of data on PM2.5 and health events. This prototype demonstrates the effectiveness of the proposed approach in data integration.
Conclusion: It is concluded that using a model-based approach strengthens decision-making in public health policies and quality management strategies in the healthcare sector.
Elmasri, R, Navathe S, Castillo V, Pérez G, Espiga, B. Fundamentos de sistemas de bases de datos. Earson educación; 2007.
Jarke, M, Lenzerini, M, Vassiliou, Y, Vassiliadis, P. (2002). Fundamentals of data warehouses. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-3-662-05153-5
Olivé A. A universal ontology-based approach to data integration. Enterprise Modelling and Information Systems Architectures (EMISAJ), 13, 110-119; 2018
Dumas M, La Rosa M, Mendling J, Reijers, H. Fundamentals of business process management. Springer; 2013.. DOI: https://doi.org/10.1007/978-3-642-33143-5
Poole, J., Chang, D., Tolbert, D., & Mellor, D. (2002). Common warehouse metamodel. John Wiley & Sons; 2002.
Object Management Group Model Driven Architecture (MDA). OMG MDA Guide rev. 2.0; 2014.
Sajji A, Rhazali Y, Hadi Y. A methodology for transforming BPMN to IFML into MDA; Bulletin of Electrical
Engineering and Informatics, 2022; 11(5), 2773-2782. DOI: https://doi.org/10.11591/eei.v11i5.3973
Sun S, Meng F, Chu D. A model driven approach to constructing knowledge graph from relational database. In Journal of Physics: Conference Series (Vol. 1584, No. 1, p. 012073). IOP Publishing; 2020. DOI: https://doi.org/10.1088/1742-6596/1584/1/012073
Azzaoui A, Rabhi O, Mani A. A model driven architecture approach to generate multidimensional schemas of data warehouses; 2019. DOI: https://doi.org/10.3991/ijoe.v15i12.10720
Belkadi F, Esbai R. A Model-Driven Engineering: From Relational Database to Document-oriented Database in Big Data Context. In ICSOFT (pp. 653-659); 2021. DOI: https://doi.org/10.5220/0010604900002992
Xie J, Xu F, Li Z, Li X. Data Mining Method under Model-Driven Architecture (MDA). Security and Communication Networks; 2022. DOI: https://doi.org/10.1155/2022/5806829
Hanine M, Lachgar M, Elmahfoudi S, Boutkhoum O. MDA Approach for Designing and Developing Data Warehouses: A Systematic Review & Proposal. International Journal of Online & Biomedical Engineering; 2021; DOI: https://doi.org/10.3991/ijoe.v17i10.24667
Esbai R, Hakkou R, Habri A. Modeling and automatic generation of data warehouse using model-driven transformation in business intelligence process. Indonesian Journal of Electrical Engineering and Computer Science Vol. 30, No. 3, June 2023, pp. 1866~1874 ISSN: 2502-4752, DOI: 10.11591/ijeecs.v30.i3.pp1866-1874 DOI: https://doi.org/10.11591/ijeecs.v30.i3.pp1866-1874
Peláez O, y otros.as Bermejo, P. Brotes, epidemias, eventos y otros términos epidemiológicos de uso cotidiano. Revista Cubana de Salud Pública, 46, e2358; 2020.
Mercuriali, L, Oliveras L, Gómez A, Marí, M, Montalvo T, Villalbí J. Un sistema de vigilancia de salud pública Para el cambio climático en las ciudades. Gaceta Sanitaria, 36, 283-286; 2022. DOI: https://doi.org/10.1016/j.gaceta.2021.01.003
United States Environmental Protection Agency. Particulate matter (PM) basics; 2017.
Novillo-Ortiz D, D’Agostino M, Becerra-Posada F. El rol de la OPS/OMS en el desarrollo de capacidad en eSalud en las Américas: análisis del período 2011-2015. Revista Panamericana de Salud Pública; 2016; 40, 85-89
Wooley J, Godzik A, Friedberg I. A Primer on Metagenomics. PLoS Comput Biol 6(2): e1000667.https://doi.org/10.1371/journal.pcbi.1000667; DOI: https://doi.org/10.1371/journal.pcbi.1000667
Behzad H, Gojobori T, Mineta K. Challenges and Opportunities of Airborne Metagenomics. Genome Biol Evol;7:1216–doi: 10.1093/gbe/evv064; 2015 DOI: https://doi.org/10.1093/gbe/evv064
Grinn-Gofroń A, Strzelczak A. Changes in concentration of Alternaria and Cladosporium spores during summer storms. Int J Biometeorol. Sep; 57(5):759-68; 2013 DOI: https://doi.org/10.1007/s00484-012-0604-0
Rodó X, Curcoll R, Robinson M, Ballester, J, Burns, J, Cayan R., ... Morguí, J. Tropospheric winds from
northeastern China carry the etiologic agent of Kawasaki disease from its source to Japan. Proceedings of the National Academy of Sciences, 111(22), 7952-7957; 2014. DOI: https://doi.org/10.1073/pnas.1400380111
Mueller-Anneling L, Avol E, Peters JM, Thorne PS. Ambient endotoxin concentrations in PM10 from Southern California. Environ Health Perspect. Apr; 112(5):583-8; 2004. DOI: https://doi.org/10.1289/ehp.6552
Ministerio de Salud, S. D. S., & Inspección, S. (2006). DECRETO 3518 DE 2006 (OCTUBRE 09).
Lazcano-Ponce E, Fernández E, Salazar-Martínez E, Hernández-Avila, M. Estudios de cohorte. Metodología, Sesgos y aplicación. Salud pública de México, 42, 230-241; 2000. DOI: https://doi.org/10.1590/S0036-36342000000300010
World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide: executive summary; 2021.
Taylor J, Shrubsole C, Symonds P, Mackenzie I, Davies, M. Application of an indoor air pollution metamodel to A spatially-distributed housing stock. Science of the Total Environment, 667, 390-399; 2019. DOI: https://doi.org/10.1016/j.scitotenv.2019.02.341
Kleppe A, Warmer J, Bast W. MDA explained: the model driven architecture: practice and promise. Addison-Wesley Professional; 2003.
Atkinson C, Kühne T. Model-driven development: A metamodeling foundation. IEEE Software, 20(5), 36–41. https://doi.org/10.1109/MS.2003.1231149; DOI: https://doi.org/10.1109/MS.2003.1231149
Imran, S., Mahmood, T., Qamar, A. M., Siddiqui, A. J., Ahmed, I., & Shariq, N. (2024). NODW Framework for Data Warehousing-A NoSQL Big Data Perspective. Authorea Preprints- DOI: https://doi.org/10.22541/au.170537198.88138048/v1
Wijaya, W., & Wiratama, J. (2024). The Implementation of Data Warehouse and Star Schema for Optimizing Property Business Decision Making. G-Tech: Journal Teknologi Terapan, 8(2), 1242-1250. DOI: https://doi.org/10.33379/gtech.v8i2.4091
Kimball R, Ross M. The data warehouse toolkit: the definitive guide to dimensional modeling. John Wiley &Sons; 2013
Accepted 2024-07-22
Published 2024-09-12
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).