Nanomateriales de carbono: uso en biosensores electroquímicos para el diagnóstico temprano del cáncer
Contenido principal del artículo
Introducción: El cáncer es una de las principales causas de mortalidad a nivel mundial, y su detección temprana mejora las tasas de supervivencia. Los métodos convencionales son costosos, invasivos y de largo tiempo de análisis. Los biosensores electroquímicos surgen como una alternativa eficiente para detectar biomarcadores de cáncer de forma rápida y precisa.
Objetivo: Revisar el uso de nanomateriales de carbono en biosensores electroquímicos para la detección temprana del cáncer, destacando sus propiedades, ventajas y desafíos en aplicaciones biomédicas.
Metodología: Se realizó una búsqueda en Scopus y Web of Science de artículos publicados desde 2018 en inglés. Se usaron ecuaciones de búsqueda con términos clave y se aplicaron filtros de inclusión y exclusión. Los estudios seleccionados fueron organizados y analizados sistemáticamente según el tipo de nanomaterial de carbono utilizado.
Resultados: Los nanomateriales de carbono mejoran la sensibilidad y selectividad de los biosensores electroquímicos, permitiendo la detección de biomarcadores a muy bajas concentraciones. El grafeno y el óxido de grafeno reducido destacan por su alta conductividad y facilidad de funcionalización.
Conclusiones: La incorporación de nanomateriales de carbono en biosensores electroquímicos contribuye en la detección temprana del cáncer. Sin embargo, se requiere más investigación al respecto para mejorar la tecnología y lograr su traslado a entornos clínicos.
Organización Mundial de la Salud (ONU). Cáncer . 2022 [cited 2025 Feb 13]. Available from: https://www.who.int/es/news-room/fact-sheets/detail/cancer
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: An overview. Int J Cancer . 2021;149(4):778–89. Available from: https://doi.org/10.1002/ijc.33588
Alsharabi RM, Rai S, Mohammed HY, Farea MA, Srinivasan S, Saxena PS, et al. A comprehensive review on graphene-based materials as biosensors for cancer detection. Oxford Open Materials Science . 2023;3(1). Available from: https://doi.org/10.1093/oxfmat/itac013
Han X, Wang W, He J, Jiang L, Li X. Osteopontin as a biomarker for osteosarcoma therapy and prognosis (Review). Vol. 17, Oncology Letters. Spandidos Publications; 2019. p. 2592–8. Available from: https://doi.org/10.3892/ol.2019.9905
Agrahari S, Kumar Gautam R, Kumar Singh A, Tiwari I. Nanoscale materials-based hybrid frameworks modified electrochemical biosensors for early cancer diagnostics: An overview of current trends and challenges. Microchemical Journal . 2022;172:106980. Available from: https://doi.org/10.1016/j.microc.2021.106980
Rivas C, Dutrenit B. Uso de biosensores en la práctica médica. XXVIII SEMINARIO DE INGENIERÍA BIOMÉDICA. 2019. Available from: http://www.nib.fmed.edu.uy/seminario_ib/2019/Uso%20de%20biosensores%20en%20la%20pr%C3%A1ctica%20m%C3%A9dica%20(2019)%20Monograf%C3%ADa%20Hern%C3%A1n%20Castillo.pdf
Sanko V, Kuralay F. Label-Free Electrochemical Biosensor Platforms for Cancer Diagnosis: Recent Achievements and Challenges. Biosensors 2023, Vol 13, Page 333 . 2023 Mar 1 [cited 2024 Apr 30];13(3):333. Available from: https://doi.org/10.3390/bios13030333
da Silva ETSG, Souto DEP, Barragan JTC, de F. Giarola J, de Moraes ACM, Kubota LT. Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem . 2017 Apr 1 [cited 2024 Apr 30];4(4):778–94. Available from: https://doi.org/10.1002/celc.201600758
Fetz V, Knauer SK, Bier C, von Kries JP, Stauber RH. Translocation Biosensors – Cellular System Integrators to Dissect CRM1-Dependent Nuclear Export by Chemicogenomics. Sensors 2009, Vol 9, Pages 5423-5445 . 2009 Jul 9 [cited 2023 Nov 21];9(7):5423–45. Available from: https://doi.org/10.3390/s90705423
Purohit B, Vernekar PR, Shetti NP, Chandra P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors International. 2020 Jan 1;1:100040. Available from: https://doi.org/10.1016/j.sintl.2020.100040
Yang Y, Huang Q, Xiao Z, Liu M, Zhu Y, Chen Q, et al. Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer. Mater Today Bio. 2022 Jan 1;13:100218. Available from: https://doi.org/10.1016/j.mtbio.2022.100218
Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev . 2010 Apr 26 [cited 2023 Sep 20];39(5):1747–63. Available from: https://doi.org/10.1039/b714449k
Hasan MR, Ahommed MS, Daizy M, Bacchu MS, Ali MR, Al-Mamun MR, et al. Recent development in electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron X. 2021 Sep 1;8:100075. Available from: https://doi.org/10.1016/j.biosx.2021.100075
Richter EM, Munoz RAA. Amperometric detection for bioanalysis. Tools and Trends in Bioanalytical Chemistry . 2021 Nov 25 [cited 2023 Sep 20];253–64. Available from: https://doi.org/10.1007/978-3-030-82381-8_12
Schachinger F, Chang H, Scheiblbrandner S, Ludwig R. Amperometric Biosensors Based on Direct Electron Transfer Enzymes. Molecules 2021, Vol 26, Page 4525 . 2021 Jul 27 [cited 2023 Sep 20];26(15):4525. Available from: https://doi.org/10.3390/molecules26154525
Kaur B, Kumar S, Kaushik BK. Recent advancements in optical biosensors for cancer detection. Biosens Bioelectron. 2022 Feb 1;197:113805. Available from:
https://doi.org/10.1016/j.bios.2021.113805
Safari M, Moghaddam A, Salehi Moghaddam A, Absalan M, Kruppke B, Ruckdäschel H, et al. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta . 2023 Jun;258:124399. Available from: https://doi.org/10.1016/j.talanta.2023.124399
Dridi F, Marrakchi M, Gargouri M, Saulnier J, Jaffrezic-Renault N, Lagarde F. Nanomaterial-based electrochemical biosensors for food safety and quality assessment. Nanobiosensors . 2017 [cited 2022 Nov 22];167–204. Available from: https://doi.org/10.1016/B978-0-12-804301-1.00005-9
Vijayan VM, Jothi L, Arunagirinathan RS, Nageswaran G. Recent advances in the electrochemical sensing of lung cancer biomarkers. Biosens Bioelectron X . 2022 [cited 2025 Feb 13];12. Available from: https://doi.org/10.1016/j.biosx.2022.100235
Eivazzadeh-Keihan R, Bahojb Noruzi E, Chidar E, Jafari M, Davoodi F, Kashtiaray A, et al. Applications of carbon-based conductive nanomaterials in biosensors. Chemical Engineering Journal. 2022 Aug 15;442:136183. Available from: https://doi.org/10.1016/j.cej.2022.136183
Nehra M, Dilbaghi N, Kumar S, Hassan AA. Carbon-Based Nanomaterials for the Development of Sensitive Nanosensor Platforms. Advances in Nanosensors for Biological and Environmental Analysis. 2019 Jan 1;1–25. Available from: https://doi.org/10.1016/B978-0-12-817456-2.00001-2
Pourmadadi M, Nouralishahi A, Shalbaf M, Shabani Shayeh J, Nouralishahi A. An electrochemical aptasensor for detection of prostate-specific antigen-based on carbon quantum dots-gold nanoparticles. Biotechnol Appl Biochem . 2023 Feb 1 [cited 2024 Apr 30];70(1):175–83. Available from: https://doi.org/10.1002/bab.2340
Lawal AT. Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron. 2018 May 30;106:149–78. Available from: https://doi.org/10.1016/j.bios.2018.01.030
Akbari jonous Z, Shayeh JS, Yazdian F, Yadegari A, Hashemi M, Omidi M. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide–gold nanostructures. Eng Life Sci . 2019 Mar 1 [cited 2024 Apr 30];19(3):206–16. Available from: https://doi.org/10.1002/elsc.201800093
Kivrak E, Kara P. Simultaneous detection of ovarian cancer related miRNA biomarkers with carboxylated graphene oxide modified electrochemical biosensor platform. Bioelectrochemistry [Internet]. 2025;161:108806. Available from: https://doi.org/10.1016/j.bioelechem.2024.108806
Park Y, Hong MS, Lee WH, Kim JG, Kim K. Highly sensitive electrochemical aptasensor for detecting the vegf165 tumor marker with pani/cnt nanocomposites. Biosensors (Basel) . 2021;11(4). Available from: https://doi.org/10.3390/bios11040114
Hassani S, Salek Maghsoudi A, Rezaei Akmal M, Rahmani SR, Sarihi P, Ganjali MR, et al. A Sensitive Aptamer-Based Biosensor for Electrochemical Quantification of PSA as a Specific Diagnostic Marker of Prostate Cancer. Journal of Pharmacy & Pharmaceutical Sciences . 2020 Jul 10;23:243–58. Available from: https://doi.org/10.18433/jpps31171
Yuanfeng P, Ruiyi L, Xiulan S, Guangli W, Zaijun L. Highly sensitive electrochemical detection of circulating tumor DNA in human blood based on urchin-like gold nanocrystal-multiple graphene aerogel and target DNA-induced recycling double amplification strategy. Anal Chim Acta . 2020;1121:17–25. Available from: https://doi.org/10.1016/j.aca.2020.04.077
Chen M, Wu D, Tu S, Yang C, Chen D, Xu Y. CRISPR/Cas9 cleavage triggered ESDR for circulating tumor DNA detection based on a 3D graphene/AuPtPd nanoflower biosensor. Biosens Bioelectron . 2021;173. Available from: https://doi.org/10.1016/j.bios.2020.112821
Purohit B, Kumar A, Kumari R, Mahato K, Roy S, Srivastava A, et al. 3D gold dendrite and reduced graphene oxide-chitosan nanocomposite-based immunosensor for carcinoembryonic antigen detection in clinical settings. Surfaces and Interfaces. 2024 Apr 1;47:104197. Available from: https://doi.org/10.1016/j.surfin.2024.104197
Sotnikov D V., Berlina AN, Ivanov VS, Zherdev A V., Dzantiev BB. Adsorption of proteins on gold nanoparticles: One or more layers? Colloids Surf B Biointerfaces. 2019 Jan 1;173:557–63. Available from: https://doi.org/10.1016/j.colsurfb.2018.10.025
Echeverri D, Calucho E, Marrugo-Ramírez J, Álvarez-Diduk R, Orozco J, Merkoçi A. Capacitive immunosensing at gold nanoparticle-decorated reduced graphene oxide electrodes fabricated by one-step laser nanostructuration. Biosens Bioelectron. 2024 May 15;252:116142. Available from: https://doi.org/10.1016/j.bios.2024.116142
Roushani M, Zalpour N. Impedimetric ultrasensitive detection of trypsin based on hybrid aptamer-2DMIP using a glassy carbon electrode modified by nickel oxide nanoparticle. Microchemical Journal. 2022 Jan 1;172:106955. Available from: https://doi.org/10.1016/j.microc.2021.106955
Carvalho M, Gomes RM, Moreira Rocha S, Barroca-Ferreira J, Maia CJ, Guillade L, et al. Development of a novel electrochemical biosensor based on plastic antibodies for detection of STEAP1 biomarker in cancer. Bioelectrochemistry . 2023 Aug;152:108461. Available from: https://doi.org/10.1016/j.bioelechem.2023.108461
Liu C, Liu T. A graphene-assisted electrochemical sensor for detection of alpha-fetoprotein in serum. Int J Electrochem Sci . 2023;18(4). Available from: https://doi.org/10.1016/j.ijoes.2023.100081
Bollella P, Gorton L. Enzyme based amperometric biosensors. Curr Opin Electrochem. 2018 Aug 1;10:157–73. Available from: https://doi.org/10.1016/j.coelec.2018.06.003
Dhanjai, Sinha A, Lu X, Wu L, Tan D, Li Y, et al. Voltammetric sensing of biomolecules at carbon based electrode interfaces: A review. TrAC Trends in Analytical Chemistry. 2018 Jan 1;98:174–89. Available from: https://doi.org/10.1016/j.trac.2017.11.010
Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors 2008, Vol 8, Pages 1400-1458 . 2008 Mar 7 [cited 2023 Nov 27];8(3):1400–58. Available from: https://doi.org/10.3390/s80314000
Leva-Bueno J, Peyman SA, Millner PA. A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol . 2020 Jun 1 [cited 2024 May 1];209(3):343–62. Available from: https://doi.org/10.1007/s00430-020-00668-0
Elshafey R, Brisebois P, Abdulkarim H, Izquierdo R, Tavares AC, Siaj M. Effect of Graphene Oxide Sheet Size on the Response of a Label-free Voltammetric Immunosensor for Cancer Marker VEGF. Electroanalysis . 2020;32(10):2205–12. Available from: https://doi.org/10.1002/elan.202000065
Yen YK, Chao CH, Yeh YS. A graphene‐PEDOT:PSS modified paper‐based aptasensor for electrochemical impedance spectroscopy detection of tumor marker. Sensors (Switzerland) . 2020;20(5). Available from: https://doi.org/10.3390/s20051372
Cho IH, Kim DH, Park S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater Res . 2020 Feb 4 [cited 2024 May 1];24(1). Available from: https://doi.org/10.1186/s40824-019-0181-y
Sanko V, Kuralay F. Label-Free Electrochemical Biosensor Platforms for Cancer Diagnosis: Recent Achievements and Challenges. Biosensors 2023, Vol 13, Page 333 . 2023 Mar 1 [cited 2024 May 1];13(3):333. Available from: https://doi.org/10.3390/bios13030333
Khan A, DeVoe E, Andreescu S. Carbon-based electrochemical biosensors as diagnostic platforms for connected decentralized healthcare. Sensors & Diagnostics . 2023 May 19 [cited 2024 May 1];2(3):529–58. Available from: https://doi.org/10.1039/D2SD00226D
Modor Intelligence. Análisis de participación y tamaño del mercado de sensores electroquímicos tendencias de crecimiento y pronósticos (2024-2029) . [cited 2025 Feb 13]. Available from: https://www.mordorintelligence.com/es/industry-reports/global-electrochemical-sensors-market-industry
Emergen Research. Mercado de Biosensores, Por Producto (Portátil, No Portátil), Por Tecnología (Electroquímica, Óptica, Piezoeléctrica, Térmica, Nanomecánica), Por Aplicación( Atención Médica, Agricultura, Biorreactor, Otros), Por Uso final y Por Región Prevista para 2030 . 2022 May [cited 2025 Feb 13]. Available from: https://www.emergenresearch.com/es/industry-report/biosensores-mercado
Exactitude Consultancy. Mercado de biosensores . 2023 Oct [cited 2025 Feb 13]. Available from: https://exactitudeconsultancy.com/es/reports/24967/biosensors-market/#segment-analysis
Procedence Research. Cancer Diagnostics Market Size, Share and Trends 2025 to 2034 . 2024 Sep [cited 2025 Feb 13]. Available from: https://www.precedenceresearch.com/cancer-diagnostics-market
Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev . 2014 Dec 8 [cited 2023 Dec 25];44(1):362–81. Available from: https://doi.org/10.1039/C4CS00269E
Mansuriya B, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. Sensors . 2020 Feb 16;20(4):1072. Available from: https://doi.org/10.3390/s20041072
Wang X, Feng Y, Dong P, Huang J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front Chem. 2019 Oct 4;7:490939. Available from: https://doi.org/10.3389/fchem.2019.00671
Algarra M, González-Calabuig A, Radotić K, Mutavdzic D, Ania CO, Lázaro-Martínez JM, et al. Enhanced electrochemical response of carbon quantum dot modified electrodes. Talanta. 2018 Feb 1;178:679–85. Available from: https://doi.org/10.1016/j.talanta.2017.09.082
Pourmadadi M, Rahmani E, Rajabzadeh-Khosroshahi M, Samadi A, Behzadmehr R, Rahdar A, et al. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. J Drug Deliv Sci Technol. 2023 Feb 1;80:104156. Available from: https://doi.org/10.1016/j.jddst.2023.104156
García-Mendiola T, Requena-Sanz S, Martínez-Periñán E, Bravo I, Pariente F, Lorenzo E. Influence of carbon nanodots on DNA-Thionine interaction. Application to breast cancer diagnosis. Electrochim Acta . 2020;353:136522. Available from: https://doi.org/10.1016/j.electacta.2020.136522
Centane S, Nyokong T. Impedimetric aptasensor for HER2 biomarker using graphene quantum dots, polypyrrole and cobalt phthalocyanine modified electrodes. Sens Biosensing Res . 2021;34. Available from: https://doi.org/10.1016/j.sbsr.2021.100467
Centane S, Nyokong T. Co phthalocyanine mediated electrochemical detection of the HER2 in the presence of Au and CeO2 nanoparticles and graphene quantum dots. Bioelectrochemistry . 2023 Feb;149:108301. Available from: https://doi.org/10.1016/j.bioelechem.2022.108301
Abdel-aal FAM, Kamel RM, Abdeltawab AA, Mohamed FA, Mohamed AMI. Polypyrrole/carbon dot nanocomposite as an electrochemical biosensor for liquid biopsy analysis of tryptophan in the human serum of normal and breast cancer women. Anal Bioanal Chem . 2023;415(20):4985–5001. Available from: https://doi.org/10.1007/s00216-023-04784-7
Kumar N, Yadav S, Sadique MA, Khan R. Electrochemically Exfoliated Graphene Quantum Dots Based Biosensor for CD44 Breast Cancer Biomarker. Biosensors (Basel) . 2022;12(11). Available from: https://doi.org/10.3390/bios12110966
Centane S, Nyokong T. Aptamer versus antibody as probes for the impedimetric biosensor for human epidermal growth factor receptor. J Inorg Biochem . 2022;230. Available from: https://doi.org/10.1016/j.jinorgbio.2022.111764
Zhang Y, Li N, Ma W, Yang M, Hou C, Luo X, et al. Ultrasensitive detection of microRNA-21 by using specific interaction of antimonene with RNA as electrochemical biosensor. Bioelectrochemistry . 2021;142:107890. Available from: https://doi.org/10.1016/j.bioelechem.2021.107890
Tran HL, Dang VD, Dega NK, Lu SM, Huang YF, Doong R an. Ultrasensitive detection of breast cancer cells with a lectin-based electrochemical sensor using N-doped graphene quantum dots as the sensing probe. Sens Actuators B Chem . 2022 Oct;368:132233. Available from: https://doi.org/10.1016/j.snb.2022.132233
Won HJ, Ryplida B, Kim SG, Lee G, Ryu JH, Park SY. Diselenide-Bridged Carbon-Dot-Mediated Self-Healing, Conductive, and Adhesive Wireless Hydrogel Sensors for Label-Free Breast Cancer Detection. ACS Nano . 2020;14(7):8409–20. Available from: https://doi.org/10.1021/acsnano.0c02517
Pothipor C, Jakmunee J, Bamrungsap S, Ounnunkad K. An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst . 2021;146(12):4000–9. Available from: https://doi.org/10.1039/D1AN00436K
Giang NN, Won HJ, Lee G, Park SY. Cancer cells targeted visible light and alkaline Phosphatase-Responsive TiO2/Cu2+ carbon Dots-Coated wireless electrochemical biosensor. Chemical Engineering Journal . 2021;417. Available from: https://doi.org/10.1016/j.cej.2021.129196
Sri S, Lakshmi GBVS, Gulati P, Chauhan D, Thakkar A, Solanki PR. Simple and facile carbon dots based electrochemical biosensor for TNF-α targeting in cancer patient’s sample. Anal Chim Acta . 2021 Oct [cited 2023 Dec 9];1182:338909. Available from: https://doi.org/10.1016/j.aca.2021.338909
Krathumkhet N, Imae T, Wang F ming, Yuan CC, Manidae Lumban Gaol J, Paradee N. Electrochemical immunosensing by carbon ink/carbon dot/ZnO-labeled-Ag@polypyrrole composite biomarker for CA-125 ovarian cancer detection. Bioelectrochemistry . 2023;152:108430. Available from: https://doi.org/10.1016/j.bioelechem.2023.108430
Akin M, Bekmezci M, Bayat R, Coguplugil ZK, Sen F, Karimi F, et al. Mobile device integrated graphene oxide quantum dots based electrochemical biosensor design for detection of miR-141 as a pancreatic cancer biomarker. Electrochim Acta . 2022;435. Available from: https://doi.org/10.1016/j.electacta.2022.141390
Ghanavati M, Tadayon F, Bagheri H. A novel label-free impedimetric immunosensor for sensitive detection of prostate specific antigen using Au nanoparticles/MWCNTs- graphene quantum dots nanocomposite. Microchemical Journal . 2020;159:105301. Available from: https://doi.org/10.1016/j.microc.2020.105301
Popov VN. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports. 2004;43(3):61–102. Available from: https://doi.org/10.1016/j.mser.2003.10.001
Deshmukh MA, Jeon JY, Ha TJ. Carbon nanotubes: An effective platform for biomedical electronics. Biosens Bioelectron . 2020;150:111919. Available from: https://doi.org/10.1016/j.bios.2019.111919
Mohanta D, Patnaik S, Sood S, Das N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J Pharm Anal. 2019;9(5):293–300. Available from: https://doi.org/10.1016/j.jpha.2019.04.003
Lanone S, Andujar P, Kermanizadeh A, Boczkowski J. Determinants of carbon nanotube toxicity. Adv Drug Deliv Rev. 2013;65(15):2063–9. Available from: https://doi.org/10.1016/j.addr.2013.07.019
Prajapati SK, Malaiya A, Kesharwani P, Soni D, Jain A. Biomedical applications and toxicities of carbon nanotubes. Drug Chem Toxicol . 2022;45(1):435–50. Available from: https://doi.org/10.1080/01480545.2019.1709492
Costa PM, Bourgognon M, Wang JTW, Al-Jamal KT. Functionalised carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. Journal of Controlled Release. 2016;241:200–19. Available from: https://doi.org/10.1016/j.jconrel.2016.09.033
Azqhandi MHA, Farahani BV, Dehghani N. Encapsulation of methotrexate and cyclophosphamide in interpolymer complexes formed between poly acrylic acid and poly ethylene glycol on multi-walled carbon nanotubes as drug delivery systems. Materials Science and Engineering: C. 2017;79:841–7. Available from: https://doi.org/10.1016/j.msec.2017.05.089
Yan JS, Orecchioni M, Vitale F, Coco JA, Duret G, Antonucci S, et al. Biocompatibility studies of macroscopic fibers made from carbon nanotubes: Implications for carbon nanotube macrostructures in biomedical applications. Carbon N Y. 2021;173:462–76. Available from: https://doi.org/10.1016/j.carbon.2020.10.077
Chen D, Chen N, Liu F, Wang Y, Liang H, Yang Y, et al. Flexible Point-of-Care Electrodes for Ultrasensitive Detection of Bladder Tumor-Relevant miRNA in Urine. Anal Chem . 2023;95(3):1847–55. Available from: https://doi.org/10.1021/acs.analchem.2c03156
Zhang Y, Li N, Yang M, Hou C, Huo D. An ultrasensitive electrochemical biosensor for simultaneously detect microRNA-21 and microRNA-155 based on specific interaction of antimonide quantum dot with RNA. Microchemical Journal . 2023;185. Available from: https://doi.org/10.1016/j.microc.2022.108173
Aydln EB, Aydln M, Sezgintürk MK. Impedimetric Detection of Calreticulin by a Disposable Immunosensor Modified with a Single-Walled Carbon Nanotube-Conducting Polymer Nanocomposite. ACS Biomater Sci Eng . 2022 [cited 2025 Feb 13];8(9):3773–84. Available from: https://doi.org/10.1021/acsbiomaterials.2c00499
Rostamabadi PF, Heydari-Bafrooei E. Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Microchimica Acta . 2019 [cited 2025 Feb 13];186(8). Available from: https://doi.org/10.1007/s00604-019-3619-y
Joshi A, Vishnu AGK, Dhruv D, Kurpad V, Pandya HJ. Morphology-Tuned Electrochemical Immunosensing of a Breast Cancer Biomarker Using Hierarchical Palladium Nanostructured Interfaces. ACS Omega . 2022 [cited 2025 Feb 13];7(38):34177–89. Available from: https://doi.org/10.1021/acsomega.2c03532
Tran DT, Hoa VH, Tuan LH, Kim NH, Lee JH. Cu-Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Biosens Bioelectron . 2018;119:134–40. Available from: https://doi.org/10.1016/j.bios.2018.08.022
Gulati P, Kaur P, Rajam M V, Srivastava T, Mishra P, Islam SS. Single-wall carbon nanotube based electrochemical immunoassay for leukemia detection. Anal Biochem . 2018 [cited 2025 Feb 13];557:111–9. Available from: https://doi.org/10.1016/j.ab.2018.07.020
Si F, Liu Z, Li J, Yang H, Liu Y, Kong J. Sensitive electrochemical detection of A549 exosomes based on DNA/ferrocene-modified single-walled carbon nanotube complex. Anal Biochem . 2023;660:114971. Available from: https://doi.org/10.1016/j.ab.2022.114971
Gachpazan M, Hatamluyi B, Meshkat Z, Rezayi M, Tavakoly Sany SB, Gholoobi A, et al. 25-Hydroxy vitamin D3 electrochemical biosensor mediated by a truncated aptamer and CuCo2O4/N-CNTs. Microchemical Journal . 2023;193. Available from: https://doi.org/10.1016/j.microc.2023.109186
Sahraei N, Mazloum-Ardakani M, Khoshroo A, Hoseynidokht F, Mohiti J, Moradi A. Electrochemical system designed on a paper platform as a label-free immunosensor for cancer derived exosomes based on a mesoporous carbon foam- ternary nanocomposite. Journal of Electroanalytical Chemistry . 2022;920:116590. Available from: https://doi.org/10.1016/j.jelechem.2022.116590
Freitas M, Nouws HPA, Delerue‐Matos C. Electrochemical Sensing Platforms for HER2‐ECD Breast Cancer Biomarker Detection. Electroanalysis . 2019;31(1):121–8. Available from: https://doi.org/10.1002/elan.201800537
Fu S, Ning Z, Li Q, He Y, Xie C, Cheng J, et al. Sulfur source-mediated in situ growth of highly conductive nanocomposites for sensitive detection of miRNA-21. Sens Actuators B Chem . 2023;392:134086. Available from: https://doi.org/10.1016/j.snb.2023.134086
Li D, Zhang W, Miao M, Liu Y, Yang H. A high-performance PEDOT:PSS platform electrochemical biosensor for the determination of HER2 based on carboxyl-functionalized MWCNTs and ARGET ATRP. New Journal of Chemistry . 2023;47(33):15579–87. Available from: https://doi.org/10.1039/D3NJ00297G
Makableh Y, Athamneh T, Ajlouni M, Hijazi S, Alnaimi A. Enhanced response and selective gold nanoparticles/carbon nanotubes biosensor for the early detection of HER2 biomarker. Sensors and Actuators Reports . 2023 [cited 2025 Feb 13];5. Available from: https://doi.org/10.1016/j.snr.2023.100158
Miripour ZS, Aghaee P, Abbasvandi F, Hoseinpour P, Ghafari H, Namdar N, et al. Electrically guided interventional radiology, in-vivo electrochemical tracing of suspicious lesions to breast cancer prior to core needle biopsy. Biosens Bioelectron . 2020 [cited 2025 Feb 13];161. Available from: https://doi.org/10.1016/j.bios.2020.112209
Runprapan N, Wang FM, Ramar A, Yuan CC. Role of Defects of Carbon Nanomaterials in the Detection of Ovarian Cancer Cells in Label-Free Electrochemical Immunosensors. Sensors . 2023;23(3):1131. Available from: https://doi.org/10.3390/s23031131
Liang T, Qu Q, Chang Y, Gopinath SCB, Liu XT. Diagnosing ovarian cancer by identifying SCC-antigen on a multiwalled carbon nanotube-modified dielectrode sensor. Biotechnol Appl Biochem . 2019;66(6):939–44. Available from: https://doi.org/10.1002/bab.1808
Mahmoodi P, Rezayi M, Rasouli E, Avan A, Gholami M, Ghayour Mobarhan M, et al. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J Nanobiotechnology . 2020;18(1):11. Available from: https://doi.org/10.1186/s12951-020-0577-9
Carvalho M, Gomes RM, Moreira Rocha S, Barroca-Ferreira J, Maia CJ, Guillade L, et al. Development of a novel electrochemical biosensor based on plastic antibodies for detection of STEAP1 biomarker in cancer. Bioelectrochemistry . 2023;152:108461. Available from: https://doi.org/10.1016/j.bioelechem.2023.108461
Shamsazar A, Asadi A, Seifzadeh D, Mahdavi M. A novel and highly sensitive sandwich-type immunosensor for prostate-specific antigen detection based on MWCNTs-Fe3O4 nanocomposite. Sens Actuators B Chem . 2021;346:130459. Available from: https://doi.org/10.1016/j.snb.2021.130459
Alnaimi A, Al-Hamry A, Makableh Y, Adiraju A, Kanoun O. Gold Nanoparticles-MWCNT Based Aptasensor for Early Diagnosis of Prostate Cancer. Biosensors (Basel) . 2022;12(12):1130. Available from: https://doi.org/10.3390/bios12121130
Bekmezci M, Bayat R, Akin M, Coguplugil ZK, Sen F. Modified screen-printed electrochemical biosensor design compatible with mobile phones for detection of miR-141 used to pancreatic cancer biomarker. Carbon Letters . 2023;33(6):1863–73. Available from:
https://doi.org/10.1007/s42823-023-00545-9
Rawashdeh1 I, Al-Fandi MG, Makableh Y, Harahsha T. Developing a nano-biosensor for early detection of pancreatic cancer. Sensor Review . 2021;41(1):93–100. Available from: https://doi.org/10.1108/SR-01-2020-0004
Cai K, Pi W, Qin J, Peng C, Wang D, Gu Y, et al. Detection of CYFRA 21-1 in human serum by an electrochemical immunosensor based on UiO-66-NH2@CMWCNTs and CS@AuNPs. Colloids Surf B Biointerfaces . 2023;230:113517. Available from: https://doi.org/10.1016/j.colsurfb.2023.113517
Chen M, Wu D, Tu S, Yang C, Chen D, Xu Y. A novel biosensor for the ultrasensitive detection of the lncRNA biomarker MALAT1 in non-small cell lung cancer. Sci Rep . 2021;11(1):3666. Available from: https://doi.org/10.1038/s41598-021-83244-7
Wu H, Zhang G, Yang X. Electrochemical immunosensor based on Fe3O4/MWCNTs-COOH/AuNPs nanocomposites for trace liver cancer marker alpha-fetoprotein detection. Talanta . 2023;259:124492. Available from: https://doi.org/10.1016/j.talanta.2023.124492
Damiati S, Peacock M, Leonhardt S, Damiati L, Baghdadi MA, Becker H, et al. Embedded disposable functionalized electrochemical biosensor with a 3D-printed flow cell for detection of hepatic oval cells (HOCs). Genes (Basel). 2018;9(2). Available from: https://doi.org/10.3390/genes9020089
Chowdhury P, Cha BS, Kim S, Lee ES, Yoon T, Woo J, et al. T7 Endonuclease I-mediated voltammetric detection of KRAS mutation coupled with horseradish peroxidase for signal amplification. Microchimica Acta . 2022;189(2):75. Available from: https://doi.org/10.1007/s00604-021-05089-1
Wang B, Akiba U, Anzai JI. Recent Progress in Nanomaterial-Based Electrochemical Biosensors for Cancer Biomarkers: A Review. Molecules 2017, Vol 22, Page 1048 . 2017 Jun 24 [cited 2024 Mar 4];22(7):1048. Available from: https://doi.org/10.3390/molecules22071048
Karimi F, Karimi-Maleh H, Rouhi J, Zare N, Karaman C, Baghayeri M, et al. Revolutionizing cancer monitoring with carbon-based electrochemical biosensors. Environ Res. 2023 Dec 15;239:117368. Available from: https://doi.org/10.1016/j.envres.2023.117368
Cao M, Xiong DB, Yang L, Li S, Xie Y, Guo Q, et al. Ultrahigh Electrical Conductivity of Graphene Embedded in Metals. Adv Funct Mater . 2019 Apr 1 [cited 2023 Dec 26];29(17):1806792. Available from: https://doi.org/10.1002/adfm.201806792
Farjadian F, Abbaspour S, Sadatlu MAA, Mirkiani S, Ghasemi A, Hoseini-Ghahfarokhi M, et al. Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review. ChemistrySelect . 2020 Sep 7 [cited 2023 Dec 26];5(33):10200–19. Available from: https://doi.org/10.1002/slct.202002501
Hao Z, Pan Y, Shao W, Lin Q, Zhao X. Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva. Biosens Bioelectron . 2019;134:16–23. Available from: https://doi.org/10.1016/j.bios.2019.03.053
Zhou L, Mao H, Wu C, Tang L, Wu Z, Sun H, et al. Label-free graphene biosensor targeting cancer molecules based on non-covalent modification. Biosens Bioelectron . 2017;87:701–7. Available from: https://doi.org/10.1016/j.bios.2016.09.025
Balaban S, Beduk T, Durmus C, Aydindogan E, Salama KN, Timur S. Laser-scribed Graphene Electrodes as an Electrochemical Immunosensing Platform for Cancer Biomarker ‘eIF3d.’ Electroanalysis . 2021;33(4):1072–80. Available from: https://doi.org/10.1002/elan.202060482
M. Frias IA, Zine N, Sigaud M, Lozano-Sanchez P, Caffio M, Errachid A. Non-covalent π–π functionalized Gii-senseⓇ graphene foam for interleukin 10 impedimetric detection. Biosens Bioelectron . 2023;222:114954. Available from: https://doi.org/10.1016/j.bios.2022.114954
Yan M, Fu L ling, Feng H chao, Namadchian M. Application of Ag nanoparticles decorated on graphene nanosheets for electrochemical sensing of CEA as an important cancer biomarker. Environ Res . 2023;239:117363. Available from: https://doi.org/10.1016/j.envres.2023.117363
Kalkal A, Tiwari A, Sharma D, Baghel MK, Kumar P, Pradhan R, et al. Air-brush spray coated Ti3C2-MXene-graphene nanohybrid thin film based electrochemical biosensor for cancer biomarker detection. Int J Biol Macromol . 2023;253. Available from: https://doi.org/10.1016/j.ijbiomac.2023.127260
Singh VK, Kumar S, Pandey SK, Srivastava S, Mishra M, Gupta G, et al. Fabrication of sensitive bioelectrode based on atomically thin CVD grown graphene for cancer biomarker detection. Biosens Bioelectron . 2018 [cited 2025 Feb 13];105:173–81. Available from: https://doi.org/10.1016/j.bios.2018.01.014
Lin LP, Tham SY, Loh HS, Tan MTT. Biocompatible graphene-zirconia nanocomposite as a cyto-safe immunosensor for the rapid detection of carcinoembryonic antigen. Sci Rep . 2021 [cited 2025 Feb 13];11(1). Available from: https://doi.org/10.1038/s41598-021-99498-0
Salimi A, Kavosi B, Navaee A. Amine-functionalized graphene as an effective electrochemical platform toward easily miRNA hybridization detection. Measurement (Lond) . 2019 [cited 2025 Feb 13];143:191–8. Available from: https://doi.org/10.1016/j.measurement.2019.05.008
Lv H, Li Y, Zhang X, Gao Z, Zhang C, Zhang S, et al. Enhanced peroxidase-like properties of Au@Pt DNs/NG/Cu2+ and application of sandwich-type electrochemical immunosensor for highly sensitive detection of CEA. Biosens Bioelectron . 2018 [cited 2025 Feb 13];112:1–7. Available from: https://doi.org/10.1016/j.bios.2018.04.025
Haslam C, Damiati S, Whitley T, Davey P, Ifeachor E, Awan SA. Label-free sensors based on graphene field-effect transistors for the detection of human chorionic gonadotropin cancer risk biomarker. Diagnostics . 2018 [cited 2025 Feb 13];8(1). Available from: https://doi.org/10.3390/diagnostics8010005
Pothipor C, Aroonyadet N, Bamrungsap S, Jakmunee J, Ounnunkad K. A highly sensitive electrochemical microRNA-21 biosensor based on intercalating methylene blue signal amplification and a highly dispersed gold nanoparticles/graphene/polypyrrole composite. Analyst . 2021;146(8):2679–88. Available from: https://doi.org/10.1039/D1AN00116G
Rauf S, Lahcen AA, Aljedaibi A, Beduk T, Ilton de Oliveira Filho J, Salama KN. Gold nanostructured laser-scribed graphene: A new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosens Bioelectron . 2021;180. Available from: https://doi.org/10.1016/j.bios.2021.113116
Tripathy S, Gangwar R, Supraja P, Rao AVSSN, Vanjari SRK, Singh SG. Graphene Doped Mn2O3 Nanofibers as a Facile Electroanalytical DNA Point Mutation Detection Platform for Early Diagnosis of Breast/Ovarian Cancer. Electroanalysis . 2018 [cited 2025 Feb 13];30(9):2110–20. Available from: https://doi.org/10.1002/elan.201800220
Pothipor C, Wiriyakun N, Putnin T, Ngamaroonchote A, Jakmunee J, Ounnunkad K, et al. Highly sensitive biosensor based on graphene–poly (3-aminobenzoic acid) modified electrodes and porous-hollowed-silver-gold nanoparticle labelling for prostate cancer detection. Sens Actuators B Chem . 2019;296. Available from: https://doi.org/10.1016/j.snb.2019.126657
Deswal R, Narwal V, Kumar P, Verma V, Dang AS, Pundir CS. An improved amperometric sarcosine biosensor based on graphene nanoribbon/chitosan nanocomposite for detection of prostate cancer. Sensors International . 2022 [cited 2025 Feb 13];3. Available from: https://doi.org/10.1016/j.sintl.2022.100174
Suhanto RN, Harimurti S, Septiani NLW, Utari L, Anshori I, Wasisto HS, et al. Sonochemical synthesis of magnetic Fe3O4/graphene nanocomposites for label-free electrochemical biosensors. Journal of Materials Science: Materials in Electronics . 2020 [cited 2025 Feb 13];31(18):15381–93. Available from: https://doi.org/10.1007/s10854-020-04102-2
Shi J, Xie WZ, Wang LR, Song YL, Lin Y, Wu Y, et al. All-carbon sandwich-type self-powered biosensor for ultrasensitive detection of femtomolar miRNA-141. Anal Chim Acta . 2022 [cited 2025 Feb 13];1236. Available from: https://doi.org/10.1016/j.aca.2022.340589
Hu T, Bai Z, Wang D, Bai Y, Li X, Ni Z. Electrochemical aptasensor based on 3D graphene aerogel for prostate specific antigen detection. Microchemical Journal . 2023 [cited 2025 Feb 13];195. Available from: https://doi.org/10.1016/j.microc.2023.109436
Khan MS, Dighe K, Wang Z, Srivastava I, Daza E, Schwartz-Dual AS, et al. Detection of prostate specific antigen (PSA) in human saliva using an ultra-sensitive nanocomposite of graphene nanoplatelets with diblock - Co -polymers and Au electrodes. Analyst . 2018 [cited 2025 Feb 13];143(5):1094–103. Available from: https://doi.org/10.1039/C7AN01932G
Liu C, Liu T. A graphene-assisted electrochemical sensor for detection of alpha-fetoprotein in serum. Int J Electrochem Sci . 2023 [cited 2025 Feb 13];18(4). Available from: https://doi.org/10.1016/j.ijoes.2023.100081
Chen M, Wang Y, Su H, Mao L, Jiang X, Zhang T, et al. Three-dimensional electrochemical DNA biosensor based on 3D graphene-Ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer. Sens Actuators B Chem . 2018;255:2910–8. Available from: https://doi.org/10.1016/j.snb.2017.09.111
Cerezo Ruiz A, Rosa Jiménez F, Lobón Hernández JA, Gómez Jiménez FJ. Capacidad diagnóstica del antígeno carcinoembrionario. Gastroenterol Hepatol . 2014;37(10):551–7. Available from: https://doi.org/10.1016/j.gastrohep.2014.04.007
Asadi H, Ramasamy RP. Graphene-based Electrochemical Biosensor for Impedimetric Detection of miRNAs as Potential Cancer Biomarkers. J Electrochem Soc . 2020;167(16):167523. Available from: https://doi.org/10.1149/1945-7111/abd284
Pandey R, Chusuei CC, Wong BM. molecules Carbon Nanotubes, Graphene, and Carbon Dots as Electrochemical Biosensing Composites. 2021 [cited 2023 Oct 2]; Available from: https://doi.org/10.3390/molecules26216674
He H, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chem Phys Lett. 1998 Apr 24;287(1–2):53–6. Available from: https://doi.org/10.1016/S0009-2614(98)00144-4
Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater . 2010 Oct 25 [cited 2024 Jan 10];22(40):4467–72. Available from: https://doi.org/10.1002/adma.201000732
Tarcan R, Todor-Boer O, Petrovai I, Leordean C, Astilean S, Botiz I. Reduced graphene oxide today. J Mater Chem C Mater . 2020 Jan 30 [cited 2024 Jan 10];8(4):1198–224. Available from: https://doi.org/10.1039/C9TC04916A
Pan D, Lin Y, Liu X, Xin Y, Tian Q, Zhang J. Ultrasensitive and preprocessing-free electrochemical biosensing platform for the detection of cancer-derived exosomes based on spiky-shaped aptamer-magnetic beads. Biosens Bioelectron . 2022;217. Available from: https://doi.org/10.1016/j.bios.2022.114705
Işın D, Eksin E, Erdem A. Graphene-Oxide and Ionic Liquid Modified Electrodes for Electrochemical Sensing of Breast Cancer 1 Gene. Biosensors (Basel) . 2022 [cited 2025 Feb 13];12(2). Available from: https://doi.org/10.3390/bios12020095
Sadeghi M, Kashanian S, Naghib SM, Haghiralsadat F, Tofighi D. An Efficient Electrochemical Biosensor Based on Pencil Graphite Electrode Mediated by 2D Functionalized Graphene Oxide to Detect HER2 Breast Cancer Biomarker. Int J Electrochem Sci . 2022 [cited 2025 Feb 13];17. Available from: https://doi.org/10.20964/2022.04.62
Pothipor C, Bamrungsap S, Jakmunee J, Ounnunkad K. A gold nanoparticle-dye/poly(3-aminobenzylamine)/two dimensional MoSe2/graphene oxide electrode towards label-free electrochemical biosensor for simultaneous dual-mode detection of cancer antigen 15-3 and microRNA-21. Colloids Surf B Biointerfaces . 2022;210. Available from: https://doi.org/10.1016/j.colsurfb.2021.112260
Fu S, Xie C, Yang Z, Jiang M, Cheng J, Zhu C, et al. Electrochemical signal amplification strategy based on trace metal ion modified WS2 for ultra-sensitive detection of miRNA-21. Talanta . 2023;260. Available from: https://doi.org/10.1016/j.talanta.2023.124552
Bharti A, Agnihotri N, Prabhakar N. A voltammetric hybridization assay for microRNA-21 using carboxylated graphene oxide decorated with gold-platinum bimetallic nanoparticles. Microchimica Acta . 2019;186(3). Available from: https://doi.org/10.1007/s00604-019-3302-3
Pareek S, Jain U, Bharadwaj M, Saxena K, Roy S, Chauhan N. An ultrasensitive electrochemical DNA biosensor for monitoring Human papillomavirus-16 (HPV-16) using graphene oxide/Ag/Au nano-biohybrids. Anal Biochem . 2023;663. Available from: https://doi.org/10.1016/j.ab.2022.115015
Tao C, Rouhi J. A biosensor based on graphene oxide nanocomposite for determination of carcinoembryonic antigen in colorectal cancer biomarker. Environ Res . 2023;238. Available from: https://doi.org/10.1016/j.envres.2023.117113
Akbari A, Hashemzadeh H, Eshkiki ZS, Masoodi M, Tabaeian SP, Naderi-Manesh H, et al. Detection of plasma miR-223 by a novel label-free graphene oxide/gold nanocomposite immunosensor in colorectal cancer patients: An electrochemical biosensor approach. Biosens Bioelectron X . 2023;14. Available from: https://doi.org/10.1016/j.biosx.2023.100331
Damiati S, Awan SA, Peacock M, Schuster B. Functionalization of Graphene Oxide for Label-Free Electrochemical Detection of Hepatic Cancer Cells †. Engineering Proceedings . 2023;35(1). Available from: https://doi.org/10.3390/IECB2023-14599
Khodadoust A, Nasirizadeh N, Seyfati SM, Taheri RA, Ghanei M, Bagheri H. High-performance strategy for the construction of electrochemical biosensor for simultaneous detection of miRNA-141 and miRNA-21 as lung cancer biomarkers. Talanta . 2023;252. Available from: https://doi.org/10.1016/j.talanta.2022.123863
Khodadoust A, Nasirizadeh N, Taheri RA, Dehghani M, Ghanei M, Bagheri H. A ratiometric electrochemical DNA-biosensor for detection of miR-141. Microchimica Acta . 2022;189(6):213. Available from: https://doi.org/10.1007/s00604-022-05301-w
Che W, Zhao X, Wang F, Ma T, Zhao K. Electrochemical detection of CEA and CA153 Lung Cancer Markers Based on ZnO/Porous Graphene Oxide Composite Biosensor. Int J Electrochem Sci . 2022;17. Available from: https://doi.org/10.20964/2022.12.70
Liu Q, Liu J, Yang H, Wang X, Kong J, Zhang X. Highly sensitive lung cancer DNA detection via GO enhancing eATRP signal amplification. Microchemical Journal . 2021;160. Available from: https://doi.org/10.1016/j.microc.2020.105766
Kumar A, Mahato K, Dkhar DS, Srivastava A, Chandra P. Self-signal generating bioelectronic sensor surface using gadolinium hexacyanoferrate nanocomposite for oral cancer diagnosis. Sens Actuators B Chem . 2023;397. Available from: https://doi.org/10.1016/j.snb.2023.134605
Zou S, Wei H, Cui X, Mak WC, Li X, Liu G. Intercalating methylene blue in molecular beacon for sensitive detection of salivary TNF-α towards early diagnosis of oral cancer. Sensors & Diagnostics . 2022;1(4):731–8. Available from: https://doi.org/10.1039/D2SD00035K
Akbari jonous Z, Shayeh JS, Yazdian F, Yadegari A, Hashemi M, Omidi M. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide–gold nanostructures. Eng Life Sci . 2019;19(3):206–16. Available from: https://doi.org/10.1002/elsc.201800093
Khosravi F, Rahaie M, Ghaani MR, Azimzadeh M, Mostafavi E. Ultrasensitive electrochemical miR-155 nanocomposite biosensor based on functionalized/conjugated graphene materials and gold nanostars. Sens Actuators B Chem . 2023;375. Available from: https://doi.org/10.1016/j.snb.2022.132877
Aydın EB, Aydın M, Sezgintürk MK. A Simple and Low-Cost Electrochemical Immunosensor for Ultrasensitive Determination of Calreticulin Biomarker in Human Serum. Macromol Biosci . 2023;23(1). Available from: https://doi.org/10.1002/mabi.202200390
Deng M, Feng J, Tao D, Yan H, Ding J, Jaffrezic-Renault N, et al. A novel conductive nanocomposite-based biosensor for ultrasensitive detection of microRNA-21 in serum, using methylene blue as mediator. Bioelectrochemistry . 2022 Dec;148:108256. Available from: https://doi.org/10.1016/j.bioelechem.2022.108256
Amani J, Khoshroo A, Rahimi-Nasrabadi M. Electrochemical immunosensor for the breast cancer marker CA 15–3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol. Microchimica Acta . 2018;185(1). Available from: https://doi.org/10.1007/s00604-017-2532-5
Dong W, Ren Y, Bai Z, Yang Y, Chen Q. Fabrication of hexahedral Au-Pd/graphene nanocomposites biosensor and its application in cancer cell H2O2 detection. Bioelectrochemistry . 2019 Aug;128:274–82. Available from: https://doi.org/10.1016/j.bioelechem.2019.04.018
Safarzadeh M, Pan G. Detection of a Double-Stranded MGMT Gene Using Electrochemically Reduced Graphene Oxide (ErGO) Electrodes Decorated with AuNPs and Peptide Nucleic Acids (PNA). Biosensors (Basel) . 2022;12(2). Available from: https://doi.org/10.3390/bios12020098
Taati Yengejeh F, Shabani Shayeh J, Rahmandoust M, Fatemi F, Arjmand S. A highly-sensitive vascular endothelial growth factor-A(165) immunosensor, as a tool for early detection of cancer. J Biomed Mater Res B Appl Biomater . 2021;109(10):1505–11. Available from:
https://doi.org/10.1002/jbm.b.34809
Zouari M, Campuzano S, Pingarrón JM, Raouafi N. Determination of miRNAs in serum of cancer patients with a label- and enzyme-free voltammetric biosensor in a single 30-min step. Microchimica Acta . 2020;187(8). Available from: https://doi.org/10.1007/s00604-020-04400-w
Pimalai D, Putnin T, Waiwinya W, Chotsuwan C, Aroonyadet N, Japrung D. Development of electrochemical biosensors for simultaneous multiplex detection of microRNA for breast cancer screening. Microchimica Acta . 2021;188(10). Available from:
https://doi.org/10.1007/s00604-021-04995-8
Shahrokhian S, Salimian R. Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing. Sens Actuators B Chem . 2018;266:160–9. Available from:
https://doi.org/10.1016/j.snb.2018.03.120
Xia YM, Li MY, Chen CL, Xia M, Zhang W, Gao WW. Employing Label-free Electrochemical Biosensor Based on 3D-Reduced Graphene Oxide and Polyaniline Nanofibers for Ultrasensitive Detection of Breast Cancer BRCA1 Biomarker. Electroanalysis . 2020;32(9):2045–55. Available from: https://doi.org/10.1002/elan.202060039
Sadeghi M, Kashanian S, Naghib SM, Askari E, Haghiralsadat F, Tofighi D. A highly sensitive nanobiosensor based on aptamer-conjugated graphene-decorated rhodium nanoparticles for detection of HER2-positive circulating tumor cells. Nanotechnol Rev . 2022;11(1):793–810. Available from: https://doi.org/10.1515/ntrev-2022-0047
Li Y, Huan K, Deng D, Tang L, Wang J, Luo L. Facile Synthesis of ZnMn2O4@rGO Microspheres for Ultrasensitive Electrochemical Detection of Hydrogen Peroxide from Human Breast Cancer Cells. ACS Appl Mater Interfaces . 2020;12(3):3430–7. Available from:
https://doi.org/10.1021/acsami.9b19126
Sadrabadi EA, Benvidi A, Azimzadeh M, Asgharnejad L, Dezfuli AS, Khashayar P. Novel electrochemical biosensor for breast cancer detection, based on a nanocomposite of carbon nanofiber, metal–organic framework, and magnetic graphene oxide. Bioelectrochemistry. 2024 Feb 1;155:108558. Available from: https://doi.org/10.1016/j.bioelechem.2023.108558
Dave K, Pachauri N, Dinda A, Solanki PR. RGO modified mediator free paper for electrochemical biosensing platform. Appl Surf Sci . 2019;463:587–95. Available from:
https://doi.org/10.1016/j.apsusc.2018.08.219
Guo S, Lin Y, Lian Z, Zeng T, Wang L, Ye R, et al. A label-free ultrasensitive microRNA-21 electrochemical biosensor based on MXene (Ti3C2)-reduced graphene oxide-Au nanocomposites. Microchemical Journal . 2023;190. Available from: https://doi.org/10.1016/j.microc.2023.108656
Forouzanfar S, Pala N, Wang C. In-Situ Integration of 3D C-MEMS Microelectrodes with Bipolar Exfoliated Graphene for Label-Free Electrochemical Cancer Biomarkers Aptasensor. Micromachines (Basel) . 2022;13(1):104. Available from: https://doi.org/10.3390/mi13010104
Forouzanfar S, Khakpour I, Alam F, Pala N, Wang C. Novel application of electrochemical bipolar exfoliated graphene for highly sensitive disposable label-free cancer biomarker aptasensors. Nanoscale Adv . 2021;3(20):5948–58. Available from: https://doi.org/10.1039/D1NA00470K
Jiao J, Pan M, Liu X, Li B, Liu J, Chen Q. A non-enzymatic sensor based on trimetallic nanoalloy with poly (Diallyldimethylammonium chloride)-capped reduced graphene oxide for dynamic monitoring hydrogen peroxide production by cancerous cells. Sensors (Switzerland) . 2020;20(1). Available from: https://doi.org/10.3390/s20010071
Jalil O, Pandey CM, Kumar D. Highly sensitive electrochemical detection of cancer biomarker based on anti-EpCAM conjugated molybdenum disulfide grafted reduced graphene oxide nanohybrid. Bioelectrochemistry . 2021;138. Available from:
https://doi.org/10.1016/j.bioelechem.2020.107733
Rajarathinam T, Kwon M, Thirumalai D, Kim S, Lee S, Yoon JH, et al. Polymer-dispersed reduced graphene oxide nanosheets and Prussian blue modified biosensor for amperometric detection of sarcosine. Anal Chim Acta . 2021;1175:338749. Available from:
https://doi.org/10.1016/j.aca.2021.338749
Karimipour M, Heydari-Bafrooei E, Sanjari M, Johansson MB, Molaei M. A glassy carbon electrode modified with TiO2(200)-rGO hybrid nanosheets for aptamer based impedimetric determination of the prostate specific antigen. Microchimica Acta . 2019;186(1). Available from: https://doi.org/10.1007/s00604-018-3141-7
Jafari-Kashi A, Rafiee-Pour HA, Shabani-Nooshabadi M. A new strategy to design label-free electrochemical biosensor for ultrasensitive diagnosis of CYFRA 21–1 as a biomarker for detection of non-small cell lung cancer. Chemosphere . 2022;301:134636. Available from:
https://doi.org/10.1016/j.chemosphere.2022.134636
Khatri R, Puri NK. Electrochemical biosensor utilizing dual-mode output for detection of lung cancer biomarker based on reduced graphene oxide-modified reduced-molybdenum disulfide multi-layered nanosheets. J Mater Res . 2022;37(8):1451–63. Available from:
https://doi.org/10.1557/s43578-022-00546-w
Torul H, Yarali E, Eksin E, Ganguly A, Benson J, Tamer U, et al. Paper-based electrochemical biosensors for voltammetric detection of mirna biomarkers using reduced graphene oxide or mos2 nanosheets decorated with gold nanoparticle electrodes. Biosensors (Basel). 2021;11(7). Available from: https://doi.org/10.3390/bios11070236
Rawat R, Roy S, Goswami T, Mathur A. An Electroanalytical Flexible Biosensor Based on Reduced Graphene Oxide-DNA Hybrids for the Early Detection of Human Papillomavirus-16. Diagnostics . 2022;12(9). Available from: https://doi.org/10.3390/diagnostics12092087
Rawat R, Singh S, Roy S, Kumar A, Goswami T, Mathur A. Design and development of an electroanalytical genosensor based on Cu-PTCA/rGO nanocomposites for the detection of cervical cancer. Mater Chem Phys . 2023;295. Available from:
https://doi.org/10.1016/j.matchemphys.2022.127050
Bahavarnia F, Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N, Hassanzadeh A. Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: A new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD). Int J Biol Macromol . 2019;138:744–54. Available from:
https://doi.org/10.1016/j.ijbiomac.2019.07.109
Meng A, Hong X, Zhang Y, Liu W, Zhang Z, Sheng L, et al. A free-standing flexible sensor MnO2–Co/rGO-CNT for effective electrochemical hydrogen peroxide sensing and real-time cancer biomarker assaying. Ceram Int. 2023;49(2):2440–50. Available from:
https://doi.org/10.1016/j.ceramint.2022.09.217
Dinani HS, Pourmadadi M, Yazdian F, Rashedi H, Ebrahimi SAS, Shayeh JS, et al. Fabrication of Au/Fe3O4/RGO based aptasensor for measurement of miRNA-128, a biomarker for acute lymphoblastic leukemia (ALL). Eng Life Sci. 2022;22(8):519–34. Available from:
https://doi.org/10.1002/elsc.202100170
Rahman M, Niu J, Cui X, Zhou C, Tang N, Jin H, et al. Electrochemical Biosensor Based on l -Arginine and rGO-AuNSs Deposited on the Electrode Combined with DNA Probes for Ultrasensitive Detection of the Gastric Cancer-Related PIK3CA Gene of ctDNA. ACS Appl Bio Mater. 2022;5(11):5094–103. Available from: https://doi.org/10.1021/acsabm.2c00393
Pachauri N, Dave K, Dinda A, Solanki PR. Cubic CeO2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. J Mater Chem B. 2018;6(19):3000–12. Available from: https://doi.org/10.1039/C8TB00653A
Buitrago-Cuellar, Porras-Ramírez J 1, Alexandra. Carga de enfermedad por cáncer de hueso primario en Colombia. 2009. Available from: https://repositorio.unbosque.edu.co/server/api/core/bitstreams/b5d56b00-5c60-4d94-8436-91120b523986/content
Soares Do Brito J, Esperança-Martins M, Abrunhosa-Branquinho A, Melo-Alvim C, Lopes-Brás R, Janeiro J, et al. Management of Unresectable Localized Pelvic Bone Sarcomas: Current Practice and Future Perspectives. Cancers 2022, Vol 14, Page 2546 14(10):2546. Available from:
https://doi.org/10.3390/cancers14102546
Ivy H. N. Wong; Andrew T. Chan; Philip J. Johnson. Quantitative Analysis of Circulating Tumor Cells in Peripheral Blood of Osteosarcoma Patients Using Osteoblast-specific Messenger RNA Markers: A Pilot Study1 | Clinical Cancer Research Clin Cancer Res (2000) 6 (6): 2183–2188. Available from: https://aacrjournals.org/clincancerres/article/6/6/2183/288423/Quantitative-Analysis-of-Circulating-Tumor-Cells
Aceptado 2025-02-13
Publicado 2025-03-20

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores ceden los derechos patrimoniales a la revista y a la Universidad del Valle sobre los manuscritos aceptados, pero podrán hacer los reusos que consideren pertinentes por motivos profesionales, educativos, académicos o científicos, de acuerdo con los términos de la licencia que otorga la revista a todos sus artículos.
Los artículos serán publicados bajo la licencia Creative Commons 4.0 BY-NC-SA (de atribución, no comercial, sin obras derivadas).