Obtención de microcápsulas de mucílago de café mediante secado por aspersión usando almidón de plátano modificado químicamente
Contenido principal del artículo
El creciente consumo mundial de café ha posicionado a Colombia como el tercer productor más grande a nivel global. Sin embargo, el procesamiento de los granos de café genera subproductos significativos, como el mucílago, una fuente rica en compuestos fenólicos con actividad antioxidante. La eliminación inadecuada de este residuo crea problemas ambientales y pérdidas económicas. Esta investigación tuvo como objetivo desarrollar cápsulas de mucílago de café de alta calidad utilizando tecnología de secado por aspersión. Se empleó almidón de plátano modificado químicamente con anhídrido octenil succínico (OSA) y maltodextrina comercial como materiales de recubrimiento para mejorar las propiedades de las cápsulas. Se caracterizaron fisicoquímica y funcionalmente muestras de mucílago de café fresco y filtrado (MF), mucílago concentrado (MC), mucílago concentrado con adición de maltodextrina y almidón modificado con OSA (MCMA) y, finalmente, el polvo de mucílago de café secado por aspersión (MP). La capacidad antioxidante (AC) del mucílago se evaluó a lo largo de las etapas de procesamiento. El MF mostró una AC de 179,2 µmol de trolox/100 g, mientras que el polvo final de mucílago de café (MP) mostró una AC significativamente mayor de 5444,35 µmol de trolox/100 g. Además, el MP mostró un índice de estabilidad de 0,48, actividad del agua (aw) de 0,19, solubilidad del 14,64% y una alta capacidad de retención de agua del 90,53%. El análisis microscópico reveló estructuras amorfas con un tamaño promedio de 29,16 ± 2,12 µm en el MP. Estos hallazgos resaltan el potencial del secado por aspersión con matrices de grado alimenticio como el almidón de plátano modificado con OSA para encapsular el mucílago de café, preservando su capacidad antioxidante y creando un nuevo ingrediente alimentario funcional con propiedades de retención de agua.
ICO. International Coffee Organization - Aspectos botánicos [Internet]. 2023 [cited 2023 Apr 24]. Available from: https://ico.org/ES/botanical_c.asp
Flórez CP, Quiroga-Cardona J, Arias JC. Variedades del Café. Guía más Agron más Product más Calid [Internet]. 2021 [cited 2023 Apr 24];11–29. Available from: 10.38141/10791/0014_1 DOI: https://doi.org/10.38141/10791/0014_1
FAOSTAT. FAO [Internet]. 2021 [cited 2023 Apr 3]. Available from: https://www.fao.org/faostat/en/#data/QI
Agronet. Estadísticas - MinAgricultura [Internet]. Área, Producción y Rendimiento Nacional. 2021 [cited 2023 Apr 25]. Available from: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
FNC. Producción de café de Colombia en 2020 fue de 13,9 millones de sacos - Federación Nacional de Cafeteros [Internet]. 2021 [cited 2023 Apr 25]. Available from: https://federaciondecafeteros.org/wp/listado-noticias/produccion-de-cafe-de-colombia-en-2020-fue-de-139-millones-de-sacos/
Alvarado-Alvarado G, Posada-Suárez HE, Cortina HA. Castillo: Nueva variedad de café con resistencia a la roya. Av Técnicos Cenicafé [Internet]. 2005;337:1–8. Available from: https://www.cenicafe.org/es/publications/avt0337.pdf DOI: https://doi.org/10.38141/10779/0337
CENICAFÉ. Los subproductos del café: Fuente de energía renovable- CENICAFÉ [Internet]. 2010. Available from: https://biblioteca.cenicafe.org/handle/10778/351
Jiménez-Zamora A, Pastoriza S, Rufián-Henares JA. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT-Food Sci Technol [Internet]. 2015;61(1):12–8. Available from: https://doi.org/10.1016/j.lwt.2014.11.031 DOI: https://doi.org/10.1016/j.lwt.2014.11.031
Iriondo-DeHond A, Iriondo-DeHond M, Del Castillo MD. Applications of compounds from coffee processing by-products. Biomolecules [Internet]. 2020;10(9):1219. Available from: https://doi.org/10.3390/biom10091219 DOI: https://doi.org/10.3390/biom10091219
Murthy PS, Naidu MM. Sustainable management of coffee industry by-products and value addition—A review. Resour Conserv Recycl [Internet]. 2012;66:45–58. Available from: https://doi.org/10.1016/j.resconrec.2012.06.005 DOI: https://doi.org/10.1016/j.resconrec.2012.06.005
Manasa V, Padmanabhan A, Anu Appaiah KA. Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Manag [Internet]. 2021;120:762–71. Available from: https://doi.org/10.1016/j.wasman.2020.10.045 DOI: https://doi.org/10.1016/j.wasman.2020.10.045
Evans JA, Johnson EJ. The role of phytonutrients in skin health. Nutrients [Internet]. 2010;2(8):903–28. Available from: https://doi.org/10.3390/nu2080903 DOI: https://doi.org/10.3390/nu2080903
Fonseca-García L, Calderón-Jaimes LS, Rivera ME. Capacidad antioxidante y contenido de fenoles totales en café y subproductos del café producido y comercializado en norte de santander (Colombia). Vitae [Internet]. 2014;21(3):228–36. Available from: https://www.redalyc.org/pdf/1698/169833713008.pdf DOI: https://doi.org/10.17533/udea.vitae.17258
Samsonowicz M, Regulska E, Karpowicz D, Leśniewska B. Antioxidant properties of coffee substitutes rich in polyphenols and minerals. Food Chem [Internet]. 2019;278(October 2018):101–9. Available from: https://doi.org/10.1016/j.foodchem.2018.11.057 DOI: https://doi.org/10.1016/j.foodchem.2018.11.057
Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients [Internet]. 2021 Jan 1 [cited 2023 Apr 25];13(1):1–30. Available from: https://pubmed.ncbi.nlm.nih.gov/33477894/ DOI: https://doi.org/10.3390/nu13010273
Howitz KT, Sinclair DA. Xenohormesis: Sensing the Chemical Cues of Other Species. Cell [Internet]. 2008 May 2 [cited 2023 Apr 25];133(3):387–91. Available from: https://doi.org/10.1016/j.cell.2008.04.019 DOI: https://doi.org/10.1016/j.cell.2008.04.019
MinAgricultura D. El cultivo de plátano (Musa paradisiaca), un importante alimento para el mundo [Internet]. 2014 Apr [cited 2023 May 8]. Available from: https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/insumos_factores_de_produccion_abr_2014.pdf
FAO. Banano. Análisis del Mercado. Resultados preliminares 2022. Roma [Internet]. 2023 [cited 2023 May 8]. p. 1–22. Available from: https://www.fao.org/3/cc3421es/cc3421es.pdf
Minagricultura. Cadena de Plátano [Internet]. 2021 Jun [cited 2023 Apr 25]. Available from: https://sioc.minagricultura.gov.co/Platano/Documentos/2021-06-30 Cifras Sectoriales.pdf
Contreras-Pérez RK, la Torre-Gutiérrez L, González-Cortés N, Jiménez-Vera R. Caracterización funcional de almidones de plátano cuadrado (Musa balbisiana Colla). Eur Sci J [Internet]. 2018;14(30):82–97. Available from: https://doi.org/10.19044/esj.2018.v14n30p82 DOI: https://doi.org/10.19044/esj.2018.v14n30p82
Granados C, Acevedo D, Cabeza A, Lozano A. Texture Profile Analysis in Bananas Pelipita, Hartón and Topocho. Inf tecnológica [Internet]. 2014 [cited 2023 May 8];25(5):35–40. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642014000500006&lng=en&nrm=iso&tlng=en DOI: https://doi.org/10.4067/S0718-07642014000500006
Sarak S, Boonsuk P, Kantachote D, Kaewtatip K. Film coating based on native starch and cationic starch blend improved postharvest quality of mangoes. Int J Biol Macromol [Internet]. 2022 Jun 1 [cited 2023 May 8];209:125–31. Available from: https://doi.org/10.1016/j.ijbiomac.2022.04.014 DOI: https://doi.org/10.1016/j.ijbiomac.2022.04.014
Mahdi AA, Mohammed JK, Al-Ansi W, Ghaleb ADS, Al-Maqtari QA, Ma M, et al. Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. Int J Biol Macromol [Internet]. 2020 Jun;152:1125–34. Available from: https://doi.org/10.1016/j.ijbiomac.2019.10.201 DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.201
Cruz-Benítez MM, Gómez-Aldapa CA, Castro-Rosas J, Hernández-Hernández E, Gómez-Hernández E, Fonseca-Florido HA. Effect of amylose content and chemical modification of cassava starch on the microencapsulation of Lactobacillus pentosus. LWT [Internet]. 2019 May 1 [cited 2023 May 8];105:110–7. Available from: https://doi.org/10.1016/j.lwt.2019.01.069 DOI: https://doi.org/10.1016/j.lwt.2019.01.069
Penbunditkul P, Yoshii H, Ruktanonchai U, Charinpanitkul T, Assabumrungrat S, Soottitantawat A. The loss of OSA-modified starch emulsifier property during the high-pressure homogeniser and encapsulation of multi-flavour bergamot oil by spray drying. Int J Food Sci Technol [Internet]. 2012 Nov 1 [cited 2023 May 8];47(11):2325–33. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2621.2012.03106.x DOI: https://doi.org/10.1111/j.1365-2621.2012.03106.x
Loksuwan J. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll [Internet]. 2007 Jul 1 [cited 2023 May 8];21(5–6):928–35. Available from: https://doi.org/10.1016/j.foodhyd.2006.10.011 DOI: https://doi.org/10.1016/j.foodhyd.2006.10.011
Quintero-Castaño VD, Vasco-Leal JF, Cuellar-Nuñez L, Luzardo-Ocampo I, Castellanos-Galeano F, Álvarez-Barreto C, et al. Novel OSA-Modified Starch from Gros Michel Banana for Encapsulation of Andean Blackberry Concentrate: Production and Storage Stability. Starch - Stärke [Internet]. 2021 Mar 1 [cited 2023 May 8];73(3–4):2000180. Available from: https://doi.org/10.1002/star.202000180
Monroy-Arellano MR, De La Espriella-Angarita S, Herrera-Barros A, León-Méndez D, León-Méndez G. Modificación química de almidones mediante reacciones de esterificación y su potencial uso en la industria cosmética. Arch Venez Farmacol y Ter [Internet]. 2020;39(5):620–9. Available from: https://doi.org/10.5281/zenodo.4263365
Kanwal S, Rehman M, Hussain A, Nadeem M, Abbas F, Akram M, et al. Development of chitosan based microencapsulated spray dried powder of tuna fish oil: oil load impact and oxidative stability. Brazilian J Biol [Internet]. 2021;84. Available from: https://doi.org/10.1590/1519-6984.254010 DOI: https://doi.org/10.1590/1519-6984.254010
Xiao Z, Kang Y, Hou W, Niu Y, Kou X. Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. Int J Biol Macromol [Internet]. 2019 Sep 15 [cited 2023 May 8];137:132–8. Available from: https://pubmed.ncbi.nlm.nih.gov/31252018/ DOI: https://doi.org/10.1016/j.ijbiomac.2019.06.178
Jyothi SS, Seethadevi A, Prabha KS, Muthuprasanna P, Pavitra P. Microencapsulation: a review. Int J Pharm Biol Sci [Internet]. 2012;3(2):509–31. Available from: https://www.researchgate.net/publication/286561087_Microencapsulation_A_review
González-Aguilar GA, Blancas-Benítez FJ, Sáyago-Ayerdi SG. Polyphenols associated with dietary fibers in plant foods: Molecular interactions and bioaccessibility. Curr Opin Food Sci [Internet]. 2017;13:84–8. Available from: https://doi.org/10.1016/j.cofs.2017.03.004 DOI: https://doi.org/10.1016/j.cofs.2017.03.004
Chávez-Salazar A, Bello-Pérez LA, Agama-Acevedo E, Castellanos-Galeano FJ, Álvarez-Barreto CI, Pacheco-Vargas G. Isolation and partial characterization of starch from banana cultivars grown in Colombia. Int J Biol Macromol [Internet]. 2017;98(January):240–6. Available from: https://doi.org/10.1016/j.ijbiomac.2017.01.024 DOI: https://doi.org/10.1016/j.ijbiomac.2017.01.024
Quintero-Castaño VD, Castellanos-Galeano FJ, Álvarez-Barreto CI, Lucas-Aguirre JC, Bello-Pérez LA, Rodríguez-Garcia ME. Starch from two unripe plantains and esterified with octenyl succinic anhydride (OSA): Partial characterization. Food Chem [Internet]. 2020 Jun;315:126241. Available from: https://doi.org/10.1016/j.foodchem.2020.126241 DOI: https://doi.org/10.1016/j.foodchem.2020.126241
Acosta Castaño M, Chavez Salazar A, Castellanos Galeano FJ. Effect of vacuum inmersion frying in “Tommy Atkins” hand drives osmotically dehydrated. Biotecnol en el Sect Agropecu y Agroindustrial [Internet]. 2020;18(1):14–24. Available from: http://www.scielo.org.co/scielo.php?pid=S1692-35612020000100014&script=sci_abstract DOI: https://doi.org/10.18684//bsaa.v18n1.1427
Hewavitharana GG, Perera DN, Navaratne SB, Wickramasinghe I. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review [Internet]. Vol. 13, Arabian Journal of Chemistry. Elsevier B.V.; 2020. p. 6865–75. Available from: https://doi.org/10.1016/j.arabjc.2020.06.039 DOI: https://doi.org/10.1016/j.arabjc.2020.06.039
Chávez-Salazar A, Castellanos-Galeano F javier, Álvarez_Barretos CI, Bello-Pérez LA, Cortés Rodríguez M, Hoyos-Leyva JD. Optimization of the Spray Drying Process of the Esterified Plantain Starch by Response Surface Methodology. Starch - Stärke [Internet]. 2019;1:1–7. Available from: https://doi.org/10.1002/star.201800330 DOI: https://doi.org/10.1002/star.201800330
Clegg KM. The application of the anthrone reagent to the estimation of starch in cereals. J Sci Food Agric. 1956;7(1):40–4. DOI: https://doi.org/10.1002/jsfa.2740070108
Lanzerstorfer C. Apparent density of compressible food powders under storage conditions. J Food Eng [Internet]. 2020 Jul;276:109897. Available from: https://doi.org/10.1016/j.jfoodeng.2019.109897 DOI: https://doi.org/10.1016/j.jfoodeng.2019.109897
Bhatia M, Rohilla S. Formulation and optimization of quinoa starch nanoparticles: Quality by design approach for solubility enhancement of piroxicam. Saudi Pharm J [Internet]. 2020 Aug;28(8):927–35. Available from: https://doi.org/10.1016/j.jsps.2020.06.013 DOI: https://doi.org/10.1016/j.jsps.2020.06.013
Olayinka OO, Adebowale KO, Olu-Owolabi BI. Effect of heat-moisture treatment on physicochemical properties of white sorghum starch. Food Hydrocoll [Internet]. 2008;22(2):225–30. Available from: https://www.sciencedirect.com/science/article/pii/S0268005X06002736 DOI: https://doi.org/10.1016/j.foodhyd.2006.11.004
Hejna A. Potential applications of by-products from the coffee industry in polymer technology – Current state and perspectives [Internet]. Vol. 121, Waste Management. Elsevier Ltd; 2021. p. 296–330. Available from: https://doi.org/10.1016/j.wasman.2020.12.018 DOI: https://doi.org/10.1016/j.wasman.2020.12.018
Cárdenas ELM, Zapata-Zapata AD, Kim D. Hydrogen production from coffee mucilage in dark fermentation with organic wastes. Energies [Internet]. 2019;12(1). Available from: https://doi.org/10.3390/en12010071 DOI: https://doi.org/10.3390/en12010071
Orrego D, Zapata-Zapata D, Kim D. Ethanol production from coffee mucilage fermentation by S. cerevisiae immobilized in calcium-alginate beads. Bioresour Technol Reports [Internet]. 2018;3:200–4. Available from: https://doi.org/10.1016/j.biteb.2018.08.006 DOI: https://doi.org/10.1016/j.biteb.2018.08.006
Vega MCQ, Castro YPR. Estudio Preliminar de la Producción de Biogás a partir de la Digestión Anaerobia del Mucílago de Café utilizando Lodo Estiércol de Cerdo como Inóculo. Univ Ind Santander [Internet]. 2012; Available from: https://noesis.uis.edu.co/server/api/core/bitstreams/ff6f6c83-1ce2-4a51-a693-cc0c40df78e7/content
Oktaviani L, Astuti DI, Rosmiati M, Abduh MY. Fermentation of coffee pulp using indigenous lactic acid bacteria with simultaneous aeration to produce cascara with a high antioxidant activity. Heliyon [Internet]. 2020;6(7):e04462. Available from: https://doi.org/10.1016/j.heliyon.2020.e04462 DOI: https://doi.org/10.1016/j.heliyon.2020.e04462
Tomac I, Šeruga M, Labuda J. Evaluation of antioxidant activity of chlorogenic acids and coffee extracts by an electrochemical DNA-based biosensor. Food Chem [Internet]. 2020;325(November 2019):126787. Available from: https://doi.org/10.1016/j.foodchem.2020.126787 DOI: https://doi.org/10.1016/j.foodchem.2020.126787
Naranjo M, Vélez LT, Benjamín AR. Actividad antioxidante de café colombiano de diferentes calidades. Rev Cuba Plantas Med [Internet]. 2011;16(2):164–73. Available from: http://scielo.sld.cu/scielo.php?pid=S1028-47962011000200005&script=sci_abstract
Carlos LAJ, Cynthia TC, Misael CR. Influence of the Composition of Coconut-Based Emulsions on the Stability of the Colloidal System. Adv J Food Sci Technol [Internet]. 2018;14(3):77–92. Available from: http://dx.doi.org/10.19026/ajfst.14.5841 DOI: https://doi.org/10.19026/ajfst.14.5841
Mirhosseini H, Tan CP, Hamid NSA, Yusof S. Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2008;315(1):47–56. Available from: https://doi.org/10.1016/j.colsurfa.2007.07.007 DOI: https://doi.org/10.1016/j.colsurfa.2007.07.007
Borges C V., Maraschin M, Coelho DS, Leonel M, Gomez HAG, Belin MAF, et al. Nutritional value and antioxidant compounds during the ripening and after domestic cooking of bananas and plantains. Food Res Int [Internet]. 2020 Jun;132:109061. Available from: https://doi.org/10.1016/j.foodres.2020.109061 DOI: https://doi.org/10.1016/j.foodres.2020.109061
Sarawong C, Schoenlechner R, Sekiguchi K, Berghofer E, Ng PKW. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chem [Internet]. 2014 Jan;143:33–9. Available from: https://doi.org/10.1016/j.foodchem.2013.07.081 DOI: https://doi.org/10.1016/j.foodchem.2013.07.081
Hoyos-Leyva JD, Chavez-Salazar A, Castellanos-Galeano F, Bello-Perez LA, Alvarez-Ramirez J. Physical and chemical stability of L-ascorbic acid microencapsulated into taro starch spherical aggregates by spray drying. Food Hydrocoll [Internet]. 2018 Oct;83:143–52. Available from: https://doi.org/10.1016/j.foodhyd.2018.05.002 DOI: https://doi.org/10.1016/j.foodhyd.2018.05.002
Karrar E, Mahdi AA, Sheth S, Mohamed Ahmed IA, Manzoor MF, Wei W, et al. Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. Int J Biol Macromol [Internet]. 2021 Feb;171:208–16. Available from: https://doi.org/10.1016/j.ijbiomac.2020.12.045 DOI: https://doi.org/10.1016/j.ijbiomac.2020.12.045
Puerta-Quintero GI, Ríos Arias S. Composición química del mucílago de café, según el tiempo de fermentación y refrigeración. Cenicafé [Internet]. 2011;62(hasta 1999):23–40. Available from: https://www.cenicafe.org/es/documents/2.pdf
Quintero-Castaño VD, Vasco-Leal JF, Cuellar-Nuñez L, Luzardo-Ocampo I, Castellanos-Galeano F, Álvarez-Barreto C, et al. Novel OSA-Modified Starch from Gros Michel Banana for Encapsulation of Andean Blackberry Concentrate: Production and Storage Stability. Starch/Staerke [Internet]. 2020; Available from: https://doi.org/10.1002/star.202000180 DOI: https://doi.org/10.1002/star.202000180
Seth D, Mishra HN, Deka SC, Seth D. Functional and reconstitution properties of spray- dried sweetened yogurt powder as influenced by processing conditions yogurt powder as influenced by processing conditions. Int J Food Prop [Internet]. 2017;20(7):1603–11. Available from: https://doi.org/10.1080/10942912.2016.1214965 DOI: https://doi.org/10.1080/10942912.2016.1214965
Martins E, Cnossen DC, Silva CRJ, Cezarino JC, Nero LA, Perrone IT, et al. Determination of ideal water activity and powder temperature after spray drying to reduce Lactococcus lactis cell viability loss. J Dairy Sci [Internet]. 2019 Jul;102(7):6013–22. Available from: https://doi.org/10.3168/jds.2019-16297 DOI: https://doi.org/10.3168/jds.2019-16297
Lu W, Yang X, Shen J, Li Z, Tan S, Liu W, et al. Choosing the appropriate wall materials for spray-drying microencapsulation of natural bioactive ingredients: Taking phenolic compounds as examples. Powder Technol [Internet]. 2021;394:562–74. Available from: https://doi.org/10.1016/j.powtec.2021.08.082 DOI: https://doi.org/10.1016/j.powtec.2021.08.082
Yun P, Devahastin S, Chiewchan N. Physical properties, microstructure and digestion behavior of amylose-lipid powder complexes prepared using conventional and spray-drying based methods. Food Biosci [Internet]. 2020 Oct;37:100724. Available from: https://doi.org/10.1016/j.fbio.2020.100724 DOI: https://doi.org/10.1016/j.fbio.2020.100724
Etzbach L, Meinert M, Faber T, Klein C, Schieber A, Weber F. Effects of carrier agents on powder properties, stability of carotenoids, and encapsulation efficiency of goldenberry (Physalis peruviana L.) powder produced by co-current spray drying. Curr Res Food Sci [Internet]. 2020 Nov;3:73–81. Available from: https://doi.org/10.1016/j.crfs.2020.03.002 DOI: https://doi.org/10.1016/j.crfs.2020.03.002
Aceptado 2024-07-23
Publicado 2024-07-25
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores ceden los derechos patrimoniales a la revista y a la Universidad del Valle sobre los manuscritos aceptados, pero podrán hacer los reusos que consideren pertinentes por motivos profesionales, educativos, académicos o científicos, de acuerdo con los términos de la licencia que otorga la revista a todos sus artículos.
Los artículos serán publicados bajo la licencia Creative Commons 4.0 BY-NC-SA (de atribución, no comercial, sin obras derivadas).