Main Article Content

Authors

The purpose of this study is to present the application of energy management tools to carry out an energy characterization of a sugar mill. This research work was carried out within the framework of a national industrial project, which received funding from the United Nations Industrial Development Organization (UNIDO). The project was specifically aimed at small and medium-sized companies (SMEs) in the industrial sector of Valle del Cauca, with the objective of establishing management tools to measure energy performance and achieve sustainable improvements over time. Within the scope of this study, we were able to identify significant energy uses, called significant variables. Furthermore, we define the energy baseline, goal line, and consumption rate. In addition, critical indicators of production value, savings potential and performance were determined. Recommendations were also provided to improve the company’s energy performance. Consequently, we calculated the savings potentials for the different levels of production at sugar mill, which translated into an energy saving of 1,105,537 kWh for the year 2021. This is equivalent to an economic cost of $ 397,993,454.

1.
Vidal-Medina JR, Quispe Oqueña EC, Rodríguez-Valencia AF. Estimation of the Potential for Electrical Energy Savings in a Sugar Factory. inycomp [Internet]. 2024 Feb. 26 [cited 2024 Nov. 18];26(1):e-20613436. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13436

International Energy Agency (IEA), World Energy Outlook 2019, IEA Publications, Printed in France - November 2019. Available: www.iea.org

Gómez JR, Quispe EC, del Pilar Castrillón R, Viego PR. Identification of technoeconomic opportunities with the use of premium efficiency motors as alternative for developing countries. Energies. 2020;13(20).

https://doi.org/10.3390/en13205411 DOI: https://doi.org/10.3390/en13205411

Donolo PD, Chiacchiera E, Pezzani CM, Lifschitz AS, De Angelo C. Economic Barriers to the Application of Energy Efficient Motors in Industry. IEEE Lat Am Trans. 2020;18(10):1817-1825.

https://doi.org/10.1109/TLA.2020.9387673 DOI: https://doi.org/10.1109/TLA.2020.9387673

González, A. J., Castrillón, R., & Quispe, E. C. (2012, May). Energy efficiency improvement in the cement industry through energy management. In 2012 IEEE-IAS/PCA 54th Cement Industry Technical Conference (pp. 1-13). IEEE.

https://doi.org/10.1109/CITCON.2012.6215688 DOI: https://doi.org/10.1109/CITCON.2012.6215688

Castrillon, R. D. P., González, A. J., & Ciro Quispe, E. (2013). Mejoramiento de la eficiencia energética en la industria del cemento por proceso húmedo a través de la implementación del sistema de gestión integral de la energía. Dyna, 80(177), 115-123.

Valencia GE, Cardenas Y, Ramos ES, Morales A, Campos JC. Energy saving in industrial process based on the equivalent production method to calculate energy performance indicators. Chem Eng Trans. 2017;57(September):709-14.

Castrillon R, Quispe E, Gonzalez A, Urhan M, Fandiño D. Metodología para la implementación del Sistema de Gestión Integral de la Energía: Fundamentos y casos prácticos. Cali, Colombia: Programa Editorial Universidad Autónoma de Occidente; 2016.

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), NTC-ISO 50001:2018, Sistemas de gestión de la energía. Requisitos con orientacion para su uso, Editada por el ICONTEC, febrero 2019.

Shukla A, Kumar SY. A review on exergy, life cycle and thermo economic analysis of sugar industry. Int J Mech Eng Technol. 2017;8(10):108-119.

Mohammadi A, Tabatabaeefar A, Shahin S, Rafiee S, Keyhani A. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Convers Manag [Internet]. 2008;49(12):3566-70. Available from: http://dx.doi.org/10.1016/j.enconman.2008.07.003

https://doi.org/10.1016/j.enconman.2008.07.003 DOI: https://doi.org/10.1016/j.enconman.2008.07.003

Ensinas A V., Nebra SA, Lozano MA, Serra L. Analysis of cogeneration systems in sugar cane factories - Alternatives of steam and combined cycle power plants. ECOS 2006 - Proc 19th Int Conf Effic Cost, Optim Simul Environ Impact Energy Syst. 2006;1177-1184.

Premalatha M., Priya SS, Sivaramakrishnan V. Efficient cogeneration scheme for sugar industry. J. Sci. Ind. Res. (India). 2008;239-242.

D. B. Rojas OP. “Herramientas Lean para apoyar la implementación de sistemas de gestión de la energía basados en ISO 50001.” Energética [Internet]. 2014;44(Septiembre 27 de 2014.):60. Available from: www.revistas.unal.edu.co/energetica

Morvay Z., Gvozdenac D, Applied industrial energy and environmental management. Great Britain, John Wiley & Son, Ltd, 2008.

https://doi.org/10.1002/9780470714379 DOI: https://doi.org/10.1002/9780470714379

Avella JCC, CaiCedo oMar fredy príaS, enriQue Ciro QuiSpe oQueña, Juan riCardo vidal Medina, edgar daniel lora figueroa. El MGIE, un modelo de gestión energética para el sector productivo nacional. El hombre y la máquina [Internet]. 2008;(30):18-31. Available from: www.revistas.unal.edu.co/energetica

UNIDO, GEF, BEE, “Promoting Energy Efficiency and Renewable A GEF-UNIDO-BEE Project Best Operating Practices Jamnagar Brass Cluster,” New Delhi, India, 2017.

Rein PW. Sustainable production of raw and refined cane sugar. Zuckerindustrie. 2011;136(11):13.

https://doi.org/10.36961/si12208 DOI: https://doi.org/10.36961/si12208

Ferreira AA, Chiareto J, Cunha De Mascena KM. Sustainability practices and performance in the sugar and ethanol industry. Rev Gest Soc e Ambient. 2019;13(1):57-75.

https://doi.org/10.24857/rgsa.v13i1.1659 DOI: https://doi.org/10.24857/rgsa.v13i1.1659

Benites-Lazaro LL, Giatti L, Giarolla A. Sustainability and governance of sugarcane ethanol companies in Brazil: Topic modeling analysis of CSR reporting. J Clean Prod [Internet]. 2018;197:583-91.

https://doi.org/10.1016/j.jclepro.2018.06.212 DOI: https://doi.org/10.1016/j.jclepro.2018.06.212

Viana KRO, Perez R. Survey of sugarcane industry in Minas Gerais, Brazil: Focus on sustainability. Biomass and Bioenergy [Internet]. 2013;58:149-57.

https://doi.org/10.1016/j.biombioe.2013.08.006 DOI: https://doi.org/10.1016/j.biombioe.2013.08.006

Oenning-Soares EJ, de Oliveira LAB, de Melo FJC, Xavier L de A, de Medeiros DD. Sugarcane companies’ preferences for certified suppliers in the supply chain. Brazilian J Oper Prod Manag. 2020;17(4):1-14.

https://doi.org/10.14488/BJOPM.2020.047 DOI: https://doi.org/10.14488/BJOPM.2020.047

Gutiérrez-benítez O, Hernández-fundora HR, Castro-rodríguez DJ. Metodología para la evaluación energética de la estación de evaporación de ingenios azucareros. 2023;43(2):254-273.

Hernández-Touset JP, Espinosa-Pedraja R, Pérez-Pérez C, García Roque de Escobar AM, Alfredo García-González I. Gestión Energética En Una Central De Azúcar Crudo Con Uso Del Software Sta 4.1. 2020;47(1):77-89.

Mary FSM, Renato LS, Willerson LC-S, Roberta S. Business strategy and environmental practices: Evidence in the sugarcane energy sector in Brazil. African J Bus Manag. 2018;12(2):44-57.

https://doi.org/10.5897/AJBM2017.8463 DOI: https://doi.org/10.5897/AJBM2017.8463

Da Silva Souza EG, Rebelato MG. Assessment of the environmental performance of sugarcane companies based on waste disposed of on the soil. J Environ Heal Sci Eng [Internet]. 2023;(0123456789).

https://doi.org/10.1007/s40201-023-00880-z DOI: https://doi.org/10.1007/s40201-023-00880-z

Batista OE, Flauzino RA, Chaim OC, Lima DRM. A brazilian experience in energy management: Low-cost actions as strategy to reduce electricity costs. IFAC Proc Vol [Internet]. 2013;6(PART 1):40-7.

https://doi.org/10.3182/20130911-3-BR-3021.00025 DOI: https://doi.org/10.3182/20130911-3-BR-3021.00025

Received 2023-12-07
Accepted 2024-01-11
Published 2024-02-26