Numerical investigation of combustion in a panela furnace using openfoam
Main Article Content
To develop biomass combustion as a viable renewable energy source it is necessary to improve the furnace efficiency and investigate the potential of agricultural wastes as fuels. Computational Fluid Dynamics (CFD) modeling is a valuable tool to accomplish these objectives, OpenFOAM is a powerful open-source CFD software that has been little used in this type of application. This paper reports the study of combustion in a device of great importance for Colombia, the panela furnace, using a model developed in OpenFOAM. The combustion chamber of a Ward-Cimpa furnace, measuring 2.68 m in width and 3.32 m in height was modeled. This model was validated, by comparing the simulated values of CO and temperature at the furnace exit with data taken from literature, resulting in differences of 13.72 % and 12.23 % respectively. These discrepancies are slightly lower than those reported in other studies about the subject. The model was employed to analyze the effect of the air-flow rate on the combustion performance. The findings indicate that the increase in air-flow causes an increase in combustion activity manifested in higher temperature and CO2 emissions, which could indicate that in common operational conditions, the furnace operates under deficient air conditions and its performance could be improve by using higher air flow rates.
Mousavi SM, Fatehi H, Bai XS. Numerical study of the combustion and application of SNCR for NOx reduction in a lab-scale biomass boiler. Fuel. 2021 Jun 1;293:120154.
https://doi.org/10.1016/j.fuel.2021.120154 DOI: https://doi.org/10.1016/j.fuel.2021.120154
Buchmayr M, Gruber J, Hargassner M, Hochenauer C. Performance analysis of a steady flamelet model for the use in small-scale biomass combustion under extreme air-staged conditions. Journal of the Energy Institute. 2018 Aug 1;91(4):534-48.
https://doi.org/10.1016/j.joei.2017.04.003 DOI: https://doi.org/10.1016/j.joei.2017.04.003
Chaney J, Hao L, Jinxing L. An overview of CFD modelling of small-scale fixed-bed biomass pellet boilers with preliminary results from a simplified approach - ScienceDirect. Energy Conversion and Management. 2012 Apr 13;63:149-56.
https://doi.org/10.1016/j.enconman.2012.01.036 DOI: https://doi.org/10.1016/j.enconman.2012.01.036
Karim MdR, Naser J. Progress in Numerical Modelling of Packed Bed Biomass Combustion. In 2014.
Dernbecher A, Dieguez-Alonso A, Ortwein A, Tabet F. Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Conv Bioref. 2019 Mar 1;9(1):129-82.
https://doi.org/10.1007/s13399-019-00370-z DOI: https://doi.org/10.1007/s13399-019-00370-z
Bhuiyan AA, Karim MdR, Naser J. Chapter 11 - Modeling of Solid and Bio-Fuel Combustion Technologies. In: Khan MMK, Hassan NMS, editors. Thermofluid Modeling for Energy Efficiency Applications [Internet]. Academic Press; 2016 [cited 2019 Jun 8]. p. 259-309. Available https://doi.org/10.1016/B978-0-12-802397-6.00016-6 DOI: https://doi.org/10.1016/B978-0-12-802397-6.00016-6
Khodaei H, Al-Abdeli YM, Guzzomi F, Yeoh GH. An overview of processes and considerations in the modelling of fixed-bed biomass combustion. Energy. 2015 Aug 1;88:946-72. https://doi.org/10.1016/j.energy.2015.05.099 DOI: https://doi.org/10.1016/j.energy.2015.05.099
García Sánchez G, Chacón Velasco J, Fuentes Díaz D, Jaramillo Ibarra J, Martínez Morales J. CFD modelling of biomass boilers - a review of the state of the art. Respuestas [Internet]. 2020 Sep 1 [cited 2021 Mar 6];25(3). Available from: https://revistas.ufps.edu.co/index.php/respuestas/article/view/2462
https://doi.org/10.22463/0122820X.2462 DOI: https://doi.org/10.22463/0122820X.2462
García Sánchez GF, Chacón Velasco JL, Rueda-Ordoñez YJ, Fuentes Díaz DA, Martínez Morales JR. Solid biomass combustion modeling: Bibliometric analysis and literature review of the latest developments in OpenFOAM based simulations. Bioresource Technology Reports. 2021 Sep 1;15:100781.
https://doi.org/10.1016/j.biteb.2021.100781 DOI: https://doi.org/10.1016/j.biteb.2021.100781
Buchmayr M, Gruber J, Hargassner M, Hochenauer C. A computationally inexpensive CFD approach for small-scale biomass burners equipped with enhanced air staging. Energy Conversion and Management. 2016 May 1;115:32-42.
https://doi.org/10.1016/j.enconman.2016.02.038 DOI: https://doi.org/10.1016/j.enconman.2016.02.038
Yin C, Rosendahl LA, Kær SK. Grate-firing of biomass for heat and power production. Progress in Energy and Combustion Science. 2008 Dec 1;34(6):725-54.
https://doi.org/10.1016/j.pecs.2008.05.002 DOI: https://doi.org/10.1016/j.pecs.2008.05.002
Ordoñez RA, Hernández CA, Pedraza LF. Modelado de un Sistema de Evaporación de Múltiple Efecto para la Producción de Panela (Azúcar no Centrifugado). Información tecnológica. 2012;23(6):105-20. https://doi.org/10.4067/S0718-07642012000600012 DOI: https://doi.org/10.4067/S0718-07642012000600012
Arredondo HIV, Janna FC, Santamaría AFA. Diagnóstico energético de los procesos productivos de la panela en Colombia. Revista Facultad Nacional de Agronomía. 2004 Jul 1;57(2):2453-65.
Velásquez H, Janna F, Agudelo A. Diagnóstico exergético de los procesos productivos de la panela en Colombia. Revista Energética. 2006 Feb 27;35:15-22.
Santamaíia A, Augusto C, Pinzón Pérez J. Diseño de la Implementación de una Adaptación Tecnológica Basada en Energía Solar para la Producción Sostenible de Panela en un Trapiche del Municipio de San Benito Santander. 2016 Nov 3 [cited 2017 Jul 11]; Available from: http://repository.udistrital.edu.co/handle/11349/4190
Montoya C, Giraldo P. Propuesta de diseño de planta de procesamiento de caña para la elaboración de panela [Internet]. [Medellín-Colombia]: Universidad Nacional de Colombia; 2009. Available from: http://www.bdigital.unal.edu.co/928/1/8102356_15370639_2009.pdf
Vargas P, Aurelio M. Procesos de fabricación de panela y su aplicación a proyectos de automatización para el caso colombiano. 2015 May 7 [cited 2017 Jul 11]; Available from: http://repository.unimilitar.edu.co/handle/10654/13474
Corporación colombiana de investigación agropecuaria, AGROSAVIA. La tecnología del cultivo de la caña panelera. 1999 [cited 2017 Jul 11]; Available from: http://agris.fao.org/agris-search/search.do;jsessionid=C51A611D4E1E0DAC6FD58F2957D643BC?request_locale=fr&recordID=CO2001000510&query=&sourceQuery=&sortField=&sortOrder=&agrovocString=&advQuery=¢erString=&enableField=
Prada L, García H, Chaves A. Efecto de las variables de evaporación: presión y flujo calórico en la calidad de la panela. Agroindustria. 2014 Jul 17;16(1):7-23.
https://doi.org/10.21930/rcta.vol16_num1_art:376 DOI: https://doi.org/10.21930/rcta.vol16_num1_art:376
Osorio G. Manual Técnico. Buenas prácticas agrícolas (BPA) y buenas prácticas de manufactura (BPM) en la producción de caña y panela. 2007. 200 p.
Mendieta O, Sanchez Z. Ajuste de un modelo matemático para la combustión de bagazo de caña en una cámara Ward-Cimpa. Ciencia y Tecnología Agropecuaria. 2014;15(2):133-51. https://doi.org/10.21930/rcta.vol15_num2_art:355 DOI: https://doi.org/10.21930/rcta.vol15_num2_art:355
Guevara Enciso JI. Modelo computacional de la combustión del bagazo de caña en una cámara de combustión tipo ward-cimpa de una hornilla panelera [Internet] [Maestría]. Universidad de los Andes; 2014 [cited 2020 Jul 31]. Available from: https://repositorio.uniandes.edu.co/handle/1992/12574
Quispe Chanampa CN. Metodología de Simulación Numérica de la Combustión de Bagazo Aplicada en la Cámara de una Hornilla Panelera. Mecánica Computacional. 2014;33(4):245-61.
Rückert FU, Lehser-Pfeffermann D, Theis D, Kim JP, Schargen A, Zorbach I, et al. A new Simulation Model for Grate Firing Systems in OpenFOAM. Energy. 2021 Feb 1;216:119226. https://doi.org/10.1016/j.energy.2020.119226 DOI: https://doi.org/10.1016/j.energy.2020.119226
Kasper R. Particle Simulation with OpenFOAM®. In Haus der Wissenschaften, Braunschweig, Germany; 2017. Available from: https://www.foamacademy.com/wp-content/uploads/2016/11/GOFUN2017_ParticleSimulations_slides.pdf
Mothé C, Miranda I de. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. Journal of Thermal Analysis and Calorimetry. 2009 Aug 28;97(2):661-5.
https://doi.org/10.1007/s10973-009-0346-3 DOI: https://doi.org/10.1007/s10973-009-0346-3
García Fernández R. Modelización cinética y optimización de parámetros de combustión en calderas de biomasa. [Internet] [Doctorado]. [España]: Universidad de Oviedo; 2014 [cited 2019 Jun 8]. Available from: http://digibuo.uniovi.es/dspace/handle/10651/28947
GOH YR, YANG YB, ZAKARIA R, SIDDALL RG, NASSERZADEH V, SWITHENBANK J. Development of an Incinerator Bed Model for Municipal Solid Waste Incineration. Combustion Science and Technology. 2001 Jan 1;162(1):37-58.
https://doi.org/10.1080/00102200108952136 DOI: https://doi.org/10.1080/00102200108952136
Ranz WE, Marshall WR. Evaporation from drops: Part I. Chemical Engineering Progress. 1952;48(3):141-6.
Ranz WE, Marshall WR. Evaporation from drops: Part II. Chemical Engineering Progress. 1952;48(4):173-80.
Nordin PAN. Complex Chemistry Modeling of Diesel Spray Combustion [Internet]. 2001 [cited 2019 Dec 3]. Available from: https://research.chalmers.se/en/publication/724
Dunn C. Computational modeling of coal devolatilization and soot formation in OpenFoam [Master]. [EEUU]: University of Wyoming; 2018.
Gómez MA, Porteiro J, Patiño D, Míguez JL. CFD modelling of thermal conversion and packed bed compaction in biomass combustion. Fuel. 2014 Jan 30;117:716-32.
https://doi.org/10.1016/j.fuel.2013.08.078 DOI: https://doi.org/10.1016/j.fuel.2013.08.078
Karim MdR, Naser J. Numerical study of the ignition front propagation of different pelletised biomass in a packed bed furnace. Applied Thermal Engineering. 2018 Jan 5;128:772-84. https://doi.org/10.1016/j.applthermaleng.2017.09.061 DOI: https://doi.org/10.1016/j.applthermaleng.2017.09.061
Patiño Vilas D. Análisis experimental de combustión de biomasa en un quemador de lecho fijo [Internet] [http://purl.org/dc/dcmitype/Text]. Universidade de Vigo; 2009 [cited 2022 Feb 21]. Available from: https://dialnet.unirioja.es/servlet/tesis?codigo=139004
Accepted 2024-01-11
Published 2024-02-26
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).