Main Article Content

Authors

This article deals with modeling sulfur dioxide (SO2) concentrations emitted by two industries in Santiago de Cali. These industries use different fuel types in their boilers: Boiler 1 uses Fuel Oil, and Boiler 2 uses Diesel. To evaluate and compare the behavior of SO2 concentrations, the substitution of these fuels by natural gas is proposed. Using Aermod View, this pollutant’s dispersion was modeled and obtained that the maximum SO2 concentration from the boilers with Fuel Oil and Diesel was 1440.32 µg/m3 for an exposure time of one hour. For a 24-hour exposure time, the SO2 concentration reached 178.56 µg/m3. These levels exceed the limits established in resolution 2254 of 2017, where the maximum permissible value for one hour is 100 µg/m3, and for 24 hours is 50 µg/m3. In contrast, when using Natural Gas as fuel, it is observed that the concentrations are considerably lower. The maximum concentration is 0.74 µg/m3 for a one-hour exposure time, and for a 24-hour exposure time, 0.04 µg/m3. These results comply with current regulations. It can be concluded that natural gas is a more favorable alternative, generating significantly lower SO2 concentrations. This change in the fuel type will favor compliance with environmental regulations and effectively contribute to reducing SO2 concentration in the air.

1.
Jimenez Ramírez GM, Castillo Torres DN, Cuéllar Álvarez Y. Concentrations modeling of sulfur dioxide pollutant emitted by two industrial boilers in Santiago de Cali (Colombia). inycomp [Internet]. 2024 Feb. 26 [cited 2024 Nov. 18];26(1):e-20713337. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13337

Valencia Zapata LM. Variation of atmospheric emissions generated by fixed sources within the jurisdiction of the Regional Autonomous Corporation of the Black River and Nare Basins - CORNARE: A strategy for efficient control and monitoring. 2019;

Grisales Vargas SC. Guidance report on the link between air pollution and climate change,
mitigation strategies for short-lived climate pollutants and their incorporation into regional planning processes. 2021;(2500238039).

Acosta Santos MC. Formulation of a Modeling Protocol for Dispersion of Atmospheric Pollutants By Means of a Mathematical Model, Gaussian Model. 2021.

Núñez V, Rodríguez R, Gómez L, Herrera I, Morales M. Influence on air quality of sulfur dioxide emissions from fixed agricultural sources in Villa Clara. 2019; Available from: http://cagricola.uclv.edu.cu

Córdova Mendoza P, Barrios Mendoza TO, Córdova Barrios IC. First characterization of pollutant emissions and air quality in Ica, Peru. Rev Cuba Química [Internet]. 2021;33(1):138–53. Available from: file:///C:/Users/Godoy/Desktop/Primera caracterización de emisiones contaminantes y calidad del aire en Ica.pdf

Sandoval Menses JX. Evaluation of the concentration of particulate matter (PM 2.5) and its relationship with respiratory diseases in the municipality of Sogamoso-Boyacá. 2020;

Ministerio del Medio Ambiente y Desarrollo Sostenible. Res 2254 De 2017. 2017. p. 11.

Vidal Daza OA, Perez Vidal A. Estimation of Dilution of Atmospheric Contaminants from Paper Factory Using the AERMOD Model. Ingeniería. 2017.

Frías López A, Barcia Sardiñas S. Atmospheric emissions inventory from main fixed source of Cienfuegos city. Rev Cuba Meteorol [Internet]. 2019;25. Available from: http://opn.to/a/LRird

Alcaldia de SaOperativos de control de emisiones atmosféricas generadas por fuentes fijas (chimeneas) en el area urbana del municipio de Santiago de Calintiago de Cali. Operations to control atmospheric emissions generated by fixed sources (chimneys) in the urban area of the municipality of Santiago de Cali. 1999.

Galvis Morales K, Torres García TM. Comparative analysis of PM2.5 concentrations in air quality monitoring stations in Bogota, Medellin and Cali, during the pre-pandemic and pandemic period August 2019 August 2020. 2020.

DAGMA. Monthly Bulletin of Air Quality and Environmental Noise of Santiago de Cali. 2019;1–34.

Intriago Panchano AJ, Gomez Andrade CX. Business plan on the import and sale of additives for petroleum products in the industrial sector. 2020.

Ecopetrol. Natural Gas. New York Times. 2020.

Alcaldia de Santiago de Cali. Operations to control atmospheric emissions generated by fixed sources (chimneys) in the urban area of the municipality of Santiago de Cali. 1999.

EPA. Air Quality Dispersion Modeling [Internet]. 2017 [cited 2023 September 30]. Available from: https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models#aermod

Silva A, Arcos D. Aplicación del programa AERMOD para modelar dispersión de PM10 emitido por equipos de calefacción a leña en la ciudad de Constitución. Obras y Proy. 2011;(9):4–10. DOI: https://doi.org/10.4067/S0718-28132011000100001

Ecopetrol. Diésel. 2021

SRTM30 [Internet]. [cited 2023 November 8]. Available from: https://icesat.gsfc.nasa.gov/icesat/tools/SRTM30_Documentation.html

Ecopetrol. Fuel quality. [Internet]. 2022 [cited 2023 November 8]. Available from: https://www.ecopetrol.com.co/wps/portal/Home/sostecnibilidad/ambiental/aire-limpio/calidad-combustibles

Rangel Jiménez AE, Portilla Salazar CJ. The process of substitution of heavy fuels by natural gas in the industrial sector of Valle del Cauca and Cauca - Colombia 2004-2012. Apunt del Cenes. 2016;35(61):237–66. DOI: https://doi.org/10.19053/22565779.4148

Received 2023-11-09
Accepted 2024-02-14
Published 2024-02-26