Main Article Content

Authors

The use of polylactic acid (PLA) in the technology of fused deposition modeling (FDM), better known as 3D printing, to create all kinds of parts, from prototypes and simple pieces to highly technical end products, is a significant contender due to its wide range of properties compared to other petrochemical-based composite materials. The aim of this study was to evaluate the use of polylactic acid (PLA) for the construction of unmanned aerial vehicles (UAVs) through 3D printing. Power and force calculations for the UAV were performed, and a structural analysis using SolidWorks software was conducted to calculate maximum and minimum stresses and determine optimal manufacturing parameters. Additionally, an aerodynamic analysis using ANSYS software was carried out to determine the drag coefficient and the forces acting on the UAV. It was found that the force exerted by the motors on the arms is 13,63 N, and the power is 536 N. In the structural analysis, it was determined that the minimum stresses are located in the chassis arms, while the maximum stresses are found where the chassis is attached, with a value of 6,604 MPa and a safety factor of 3,23. In the aerodynamic analysis, a drag force of 1 N and a flight power of 108,44 N were calculated. The UAV achieved a flight height of 48 m and a flight autonomy of 17 minutes, concluding that 3D printing technology is a viable and cost-effective alternative.

Diego A. Racero-Galaraga, Universidade Federal de São Carlos. San Pablo, Brasil.

Mechanical engineer

Jesús D. Rhenals-Julio, Universidad de Córdoba. Faculty of Engineering, Department of Mechanical Engineering, Montería, Colombia

Mechanical Engineer, master

Julissa Jiménez-López, Universidad de Córdoba. Faculty of Engineering, Department of Environmental Engineering. Montería, Colombia.

Environmental Engineer

1.
Sofán-Germán SJ, Racero-Galaraga DA, Rhenals-Julio JD, Rentería-Peláez JL, Jiménez-López J. Evaluation of the use of polylactic acid in 3d printing for the construction of an unmanned aerial vehicle in the department of cordoba. inycomp [Internet]. 2024 Feb. 26 [cited 2024 Dec. 21];26(1):e-20913265. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13265

HUANG W, ZHANG L, LI W, SUN J, LIANG W, SONG X, et al. Various Types and Applications of Additive Manufacturing. DEStech Trans Comput Sci Eng. 2019;(ammso):377–81. DOI: https://doi.org/10.12783/dtcse/ammso2019/30160

Jasveer S, Jianbin X. Comparison of different types of 3D printing technologies. Int J Sci Res Publ. 2018;8(4):1–9. DOI: https://doi.org/10.29322/IJSRP.8.4.2018.p7602

Bhusnure OG, Gholve S V, Sugave BK, Dongre RC, Gore SA, Giram PS. 3D printing & pharmaceutical manufacturing: opportunities and challenges. Int J Bioassays. 2016;5(1):4723–38. DOI: https://doi.org/10.21746/ijbio.2016.01.006

Prabhu T. Modern Rapid 3D printer-A Design Review. Int J Mech Eng Technol. 2016;7(3).

Pekgor M, Nikzad M, Arablouei R, Masood S. Sensor-based filament fabrication with embedded RFID microchips for 3D printing. Mater Today Proc [Internet]. 2021;46:124–30. Available from: https://www.sciencedirect.com/science/article/pii/S2214785320349348 DOI: https://doi.org/10.1016/j.matpr.2020.06.456

Carrasco-Correa EJ, Simó-Alfonso EF, Herrero-Martínez JM, Miró M. The emerging role of 3D printing in the fabrication of detection systems. TrAC Trends Anal Chem [Internet]. 2021;136:116177. Available from: https://www.sciencedirect.com/science/article/pii/S0165993620304064 DOI: https://doi.org/10.1016/j.trac.2020.116177

Ruberu K, Senadeera M, Rana S, Gupta S, Chung J, Yue Z, et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl Mater Today [Internet]. 2021;22:100914. Available from: https://www.sciencedirect.com/science/article/pii/S2352940720303620 DOI: https://doi.org/10.1016/j.apmt.2020.100914

Farhan Khan M, Alam A, Ateeb Siddiqui M, Saad Alam M, Rafat Y, Salik N, et al. Real-time defect detection in 3D printing using machine learning. Mater Today Proc [Internet]. 2021;42:521–8. Available from: https://www.sciencedirect.com/science/article/pii/S2214785320381037 DOI: https://doi.org/10.1016/j.matpr.2020.10.482

Popovski F, Mijakovska S, Popovska HD, Nalevska GP. CREATING 3D MODELS WITH 3D PRINTING PROCESS.

Fettig A. Purposes, Limitations, and Applications of 3D Printing in Minnesota Public Schools. 2017;

Ilhan E, Ulag S, Sahin A, Yilmaz BK, Ekren N, Kilic O, et al. Fabrication of tissue-engineered tympanic membrane patches using 3D-Printing technology. J Mech Behav Biomed Mater [Internet]. 2021;114:104219. Available from: https://www.sciencedirect.com/science/article/pii/S1751616120307591 DOI: https://doi.org/10.1016/j.jmbbm.2020.104219

Xenikakis I, Tsongas K, Tzimtzimis EK, Zacharis CK, Theodoroula N, Kalogianni EP, et al. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int J Pharm [Internet]. 2021;597:120303. Available from: https://www.sciencedirect.com/science/article/pii/S0378517321001071 DOI: https://doi.org/10.1016/j.ijpharm.2021.120303

Acuna F, Rivas D, Chancusi S, Navarrete P. Design and Construction of a 3D Printer Auto Controller Wirelessly Through of Free Software. IEEE Lat Am Trans. 2015;13(6):1893–8. DOI: https://doi.org/10.1109/TLA.2015.7164214

Rayna T, Striukova L. From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technol Forecast Soc Change [Internet]. 2016;102:214–24. Available from: https://www.sciencedirect.com/science/article/pii/S0040162515002425 DOI: https://doi.org/10.1016/j.techfore.2015.07.023

Sung J, So H. 3D printing-assisted fabrication of microgrid patterns for flexible antiadhesive polymer surfaces. Surfaces and Interfaces [Internet]. 2021;23:100935. Available from: https://www.sciencedirect.com/science/article/pii/S2468023021000122 DOI: https://doi.org/10.1016/j.surfin.2021.100935

Zhou X, Zhou G, Junka R, Chang N, Anwar A, Wang H, et al. Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration. Colloids Surfaces B Biointerfaces [Internet]. 2021;197:111420. Available from: https://www.sciencedirect.com/science/article/pii/S0927776520307761 DOI: https://doi.org/10.1016/j.colsurfb.2020.111420

Al-Maliki JQ, Al-Maliki AJQ. The processes and technologies of 3D printing. Int J Adv Comput Sci Technol. 2015;4(10):161–5.

Penumakala PK, Santo J, Thomas A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos Part B Eng [Internet]. 2020;201:108336. Available from: https://www.sciencedirect.com/science/article/pii/S1359836820333850 DOI: https://doi.org/10.1016/j.compositesb.2020.108336

Oosterbeek RN, Kwon K-A, Duffy P, McMahon S, Zhang XC, Best SM, et al. Tuning structural relaxations, mechanical properties, and degradation timescale of PLLA during hydrolytic degradation by blending with PLCL-PEG. Polym Degrad Stab [Internet]. 2019;170:109015. Available from: https://www.sciencedirect.com/science/article/pii/S014139101930343X DOI: https://doi.org/10.1016/j.polymdegradstab.2019.109015

Dorati R, Genta I, Colonna C, Modena T, Pavanetto F, Perugini P, et al. Investigation of the degradation behaviour of poly(ethylene glycol-co-d,l-lactide) copolymer. Polym Degrad Stab [Internet]. 2007;92(9):1660–8. Available from: https://www.sciencedirect.com/science/article/pii/S0141391007002029 DOI: https://doi.org/10.1016/j.polymdegradstab.2007.06.020

Bakry A, Martinelli A, Bizzarri M, Cucina A, D’Ilario L, Francolini I, et al. A new approach for the preparation of hydrophilic poly(L-lactide) porous scaffold for tissue engineering by using lamellar single crystals. Polym Int. 2012;61(7):1177–85. DOI: https://doi.org/10.1002/pi.4197

Esposito Corcione C, Gervaso F, Scalera F, Padmanabhan SK, Madaghiele M, Montagna F, et al. Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceram Int [Internet]. 2019;45(2, Part B):2803–10. Available from: https://www.sciencedirect.com/science/article/pii/S027288421832039X DOI: https://doi.org/10.1016/j.ceramint.2018.07.297

Mohammadi Zerankeshi M, Bakhshi R, Alizadeh R. Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review. Bioprinting [Internet]. 2022;25:e00191. Available from: https://www.sciencedirect.com/science/article/pii/S240588662200001X DOI: https://doi.org/10.1016/j.bprint.2022.e00191

Renduchintala A, Jahan F, Khanna R, Javaid AY. A comprehensive micro unmanned aerial vehicle (UAV/Drone) forensic framework. Digit Investig [Internet]. 2019;30:52–72. Available from: https://www.sciencedirect.com/science/article/pii/S1742287619300799 DOI: https://doi.org/10.1016/j.diin.2019.07.002

Skawiński I, Goetzendorf-Grabowski T. FDM 3D printing method utility assessment in small RC aircraft design. Aircr Eng Aerosp Technol. 2019;91. DOI: https://doi.org/10.1108/AEAT-07-2018-0189

Goh GD, Agarwala S, Goh GL, Dikshit V, Sing SL, Yeong WY. Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerosp Sci Technol [Internet]. 2017;63:140–51. Available from: https://www.sciencedirect.com/science/article/pii/S127096381630503X DOI: https://doi.org/10.1016/j.ast.2016.12.019

Sandvik KB, Oliveira Martins B. Revisitando el espacio aéreo latinoamericano: una exploración de los drones como sujetos de regulación. Lat Am Law Rev [Internet]. 2018;(1):61–81. Available from: https://doi.org/10.29263/lar01.2018.03 DOI: https://doi.org/10.29263/lar01.2018.03

O. Melchor. Uso de drones: retos y oportunidades. Incytu [Internet]. 2018;16(55):1–6. Available from: https://www.foroconsultivo.org.mx/INCyTU/documentos/Completa/INCYTU_18-016.pdf

Franco Gonzales N, Restrepo Guerra IC. Análisis De Alternativas Para Mejorar La Autonomía De Vuelo En Un Cuadricóptero. 2018;142. Available from: https://red.uao.edu.co/bitstream/10614/10392/5/T08058.pdf

Rivadeneira Frisch CA. Reducción de peso, estudio de rendimiento y aumento de eficiencia en vuelo del avión no tripulado “PIQUERO” del Proyecto “Galápagos UAV.” UNIVERSIDAD SAN FRANCISCO DE QUITO; 2013.

Gonzáles M. Optimización de las propiedades mecánicas de compositos de resina poliester reforzados con fibras de vidrio y cargas de carbonato de calcio. 2014;104. Available from: http://eprints.uanl.mx/4165/1/1080253846.pdf

Prado A, Arellano B, López M, Bandala S. Metodología de la impresión tridimensional: Modelado de Deposición Fundida (FDM). 2016;

Serna L, Stouvenel A, A. F. Ácido Poliláctico (PLA): Propiedades y Aplicaciones. Ing y Compet. 2011;5. DOI: https://doi.org/10.25100/iyc.v5i1.2301

Ultimaker. Ficha de datos técnicos PLA. 2017;1–3. Available from: https://ultimaker.com/download/67583/TDS PLA v3.011-spa-ES.pdf

Carpio GIP. Análisis De Tracción De Probetas Impresas En 3D Mediante Deposición De Hilo Fundido De Pla, Abs Y Pla/Mlo. [12] [Internet]. 2011;90. Available from: http://dspace.ups.edu.ec/bitstream/123456789/1506/14/UPS-CT002062.pdf

Ruipérez Martín P. Diseño y Fabricación de un Dron. Univ Politécnica Val [Internet]. 2015;119. Available from: https://riunet.upv.es/bitstream/handle/10251/73170/RUIPÉREZ - Diseño y fabricación de un dron mediante impresión 3D.pdf?sequence=5