Main Article Content

Authors

Formative assessment contributes to improving the educational process. It collects, interprets, and systematically uses information to verify and provide feedback on achieving learning objectives. Feedback is a fundamental component during formative assessment since, through it, it is possible to receive immediate and personalized information. This reveals, early on, progress in knowledge acquired, contributing to improving learning outcomes and thus to achieving skills. Currently, a number of solutions contribute to the assessment process. But these focus on specific fields of study, which fail to include elements of context by using sensory information from mobile devices to enrich and personalize feedback. This article presents a Conceptual Model of Formative Assessment in Mobile Learning Systems, which explicitly defines the priority components that ought to be considered to support context-based formative assessment processes. The development of a prototype Web Service, based on the proposed model and integrated into the Google Classroom LMS platform, allowed real-time context-based feedback, supporting very effectively the formative feedback process, evidencing a significant increase in student learning. It is important however to expand the study population to generalize the results.

Jorge Adrian Muñoz Velasco, Universidad del Cauca, Popayán Colombia.

Jefe División de Tecnologías de la Información y la Comunicación – TIC, Universidad del Cauca; Docente Catedra, Departamento de Sistemas, Universidad del Cauca; miembro del Grupo de Investigación en Inteligencia Computacional - GICO (Categoria B – MinCiencias). Magíster en Computación e Ingeniero de Sistemas, Universidad del Cauca

Carolina Gonzáles Serrano, Universidad del Cauca, Popayán Colombia.

Profesora Titular, Departamento de Sistemas, Universidad del Cauca. Fundadora y miembro del Grupo de Investigación en Inteligencia Computacional - GICO (Categoria B – MinCiencias). Doctora en Tecnologías de la Información y la Comunicación de la Universidad de Vigo (España). Magister en Telemática. Especialista en Redes y Servicios Telemáticos. Ingeniera de Sistemas

1.
Muñoz Velasco JA, Gonzáles Serrano C. Towards an adaptive Formative Assessment Model in context-based Mobile Learning Systems. inycomp [Internet]. 2024 May 14 [cited 2024 Nov. 18];26(2):e-20313159. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13159

Unesco. Directrices para las políticas de aprendizaje móvil [Internet]. 2013. 1-43 p. Disponible en: http://unesdoc.unesco.org/images/0021/002196/219662S.pdf

Ministerio de Educación Nacional de Colombia. Tabletas para Educar [Internet]. 2016 [citado 16 de septiembre de 2018]. p. 11. Disponible en: http://micrositios.mintic.gov.co/tabletas/

Ministerio de Educación Nacional de Colombia. Computadores para Educar [Internet]. 2016 [citado 16 de septiembre de 2018]. Disponible en: https://goo.su/iiEqoD

Merchán Cifuentes, Lady, Mesa Jiménez FY. Políticas de aprendizaje móvil en el ámbito colombiano. Boletín Redipe, ISSN-e 2256-1536, Vol 7, No 3, 2018, págs 90-97 [Internet]. 2018;7(3):90-7. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=6328408

Ministerio de Educación Nacional de Colombia. Plan Nacional Decenal de Educación 2016-2026 [Internet]. 2017. Disponible en: https://goo.su/iiEqoD

Herrera S, Fennema M. Tecnologías móviles aplicadas a la educación superior. XVII Congr Argentino Ciencias la Comput [Internet]. 2011;620-30. Disponible en: http://sedici.unlp.edu.ar/handle/10915/18718

Louhab FE, Bahnasse A, Talea M. Towards an Adaptive Formative Assessment in Context-Aware Mobile Learning. Procedia Comput Sci [Internet]. 2018;135:441-8. Disponible en: https://doi.org/10.1016/j.procs.2018.08.195 DOI: https://doi.org/10.1016/j.procs.2018.08.195

Lupiana D. Context Modeling for Context-Aware Systems. Int J Intell Comput Res [Internet]. 2017;8(1):807-16. Disponible en: https://doi.org/10.20533/ijicr.2042.4655.2017.0099 DOI: https://doi.org/10.20533/ijicr.2042.4655.2017.0099

Hattie J. Influences on student learning. Inaugural lecture given on August, 2, 1999. Inaug Lect Profr Educ Univ Auckl [Internet]. 1999;1-25. Disponible en: https://goo.su/ZFpR

Kulasegaram K, Rangachari PK. Beyond «formative»: Assessments to enrich student learning. Adv Physiol Educ [Internet]. 2018;42(1):5-14. Disponible en: https://doi.org/10.1152/advan.00122.2017 DOI: https://doi.org/10.1152/advan.00122.2017

Faber JM, Visscher AJ. The effects of a digital formative assessment tool on spelling achievement: Results of a randomized experiment. Comput Educ [Internet]. 2018;122(March):1-8. Disponible en: https://doi.org/10.1016/j.compedu.2018.03.008 DOI: https://doi.org/10.1016/j.compedu.2018.03.008

González M, Benchoff D, Huapaya C, Remon C. Aprendizaje Adaptativo: Un Caso de Evaluación Personalizada. 2017;(1):65-72. Disponible en: https://doi.org/10.24215/18509959.0.p. 65-72

Jaquez J, Noguez J, Aguilar-Sanchez G, Neri L, Gonzáles-Nucamendi A. TecEval : An on-line dynamic assessment system for engineering courses available for web browsers and tablets. 2015; Disponible en: https://doi.org/10.1109/FIE.2015.7344289 DOI: https://doi.org/10.1109/FIE.2015.7344289

Napolitano J. Adaptive Learning Technology Pilot Report [Internet]. 2017. Disponible en: https://goo.su/wsza

Wang MH, Wang CS, Lee CS, Teytaud O, Liu J, Lin SW, et al. Item response theory with fuzzy markup language for parameter estimation and validation. IEEE Int Conf Fuzzy Syst [Internet]. 2015;2015-Novem. Disponible en: https://doi.org/10.1109/FUZZ-IEEE.2015.7337884 DOI: https://doi.org/10.1109/FUZZ-IEEE.2015.7337884

Nikou SA, Economides AA. A framework for mobile-assisted formative assessment to promote students’ self-determination. Futur Internet. 2021;13(5). DOI: https://doi.org/10.3390/fi13050116

Goldin I, Narciss S, Foltz P, Bauer M. New Directions in Formative Feedback in Interactive Learning Environments. Int J Artif Intell Educ [Internet]. 2017;27(3):385-92. Disponible en: http://dx.doi.org/10.1007/s40593-016-0135-7 DOI: https://doi.org/10.1007/s40593-016-0135-7

Baccari S, Neji M. Design for a context-aware and collaborative mobile learning system. 2016 IEEE Int Conf Comput Intell Comput Res ICCIC 2016 [Internet]. 2016; Disponible en: https://doi.org/10.1109/ICCIC.2016.7919578 DOI: https://doi.org/10.1109/ICCIC.2016.7919578

Jabareen Y. Building a Conceptual Framework: Philosophy, Definitions, and Procedure. Int J Qual Methods. 2009;8(4):49-62. DOI: https://doi.org/10.1177/160940690900800406

Schwaber K, Beedle M. Agile software development with Scrum. Pearson I. Edition; 2002.

Runeson P, Höst M. Guidelines for conducting and reporting case study research in software engineering. Empir Softw Eng [Internet]. 2009;14(2):131-64. Disponible en: https://doi.org/10.1007/s10664-008-9102-8 DOI: https://doi.org/10.1007/s10664-008-9102-8

Yin RK. Case Study Research: Design and Methods. Vol. 5, SAGE Inc. 2009.

Muhr T. ATLAS/ti - A prototype for the support of text interpretation. Qual Sociol [Internet]. 1991;14(4):349-71. Disponible en: https://doi.org/10.1007/BF00989645 DOI: https://doi.org/10.1007/BF00989645

Dietrichson A. Métodos Cuantitativos [Internet]. Bookdown. 2019. Disponible en: https://bookdown.org/dietrichson/metodos-cuantitativos/

Saul C, Runardotter M, Wuttke H-D. Towards Feedback Personalisation in Adaptive Assessment. EDEN Res Work [Internet]. 2010;42–143. Disponible en: https://goo.su/AewYQG DOI: https://doi.org/10.1097/01.aoa.0000853624.18642.3d

Sagaya Priya KS, Kalpana Y. A review on context modelling techniques in context awarecomputing. Int J Eng Technol [Internet]. 2016;8(1):429-33. Disponible en: https://goo.su/rxrrl

W3C. Ambient Light Sensor [Internet]. World Wide Web Consortium. 2020. Disponible en: https://www.w3.org/TR/ambient-light/

Huang S, Yin B, Liu M. Research on individualized learner model based on context-awareness. Proc - 2017 Int Symp Educ Technol ISET 2017. 2017;163-7. DOI: https://doi.org/10.1109/ISET.2017.45

Received 2023-08-17
Accepted 2023-08-23
Published 2024-05-14