Ultrasound-assisted extraction of polyphenols from mandarin peel (C. reticulata Blanco)
Main Article Content
Mandarin peel (Citrus reticulata Blanco) contains significant amounts of bioactive compounds, which can add value to this fruit’s residues. Different bioactive compound extraction methods have been implemented as an alternative to conventional ones, achieving high yields in the recovery of these compounds with a shorter extraction time and less solvent use. In this research, polyphenols were extracted from mandarin peels using an ultrasound-assisted extraction (UAE) technique. Folin-Ciocalteu and DPPH colorimetric methods were used to determine polyphenol content and antioxidant capacity. The effects of amplitude percentage, temperature, extraction time on total polyphenol content (TPC), and antioxidant capicity (AC) were evaluated using a central composite design (CCD) – Response surface methodology (RSM). In addition, the desirability composite was used to calculate the optimal process conditions. The results showed maximum TPC and AC values of 211.82 mg GAE/100g dw and 19.16 mM TE/100g dw. The optimized UAE conditions were 28% amplitude, 33.3 °C, and 30.8 min, with a total polyphenol content of 205.60 mg GAE/100g dw and an antioxidant capacity of 18.98 mM TE/100g dw. Finally, the TPC and AC of the peel extracts obtained in the UEA optimization were compared with the results of a conventional extraction (Soxhlet method). The results obtained from the extraction yield of the optimized UAE (87.74 %) showed a higher efficiency than the Soxhlet method, and presented the UAE as a good alternative for extracting polyphenols from mandarin peel.
DANE. Encuesta Nacional Agropecuaria (ENA). DANE. 2020. p. 1–38.
Ministerio de Agricultura y Desarrollo Rural. Cadena de Citricos: Indicadores e Instrumentos. Primer trimestre 2021. Minist Agric y Desarro Rural [Internet]. 2021;15. Available from: https://sioc.minagricultura.gov.co/Citricos/Documentos/2020-03-30 Cifras Sectoriales.pdf
Cañizares G. Estudio y análisis de la mandarina, y su aplicación en la gastronomía. 2015;31–2. Available from: http://repositorio.ute.edu.ec/bitstream/123456789/16111/1/63361_1.pdf
Franco G. Valorización de la Cáscara de Cítricos como Fuente de Antioxidantes para la Industria Alimentaria Mediante el Empleo de Procesos de Extracción No Convencionales. Ing Química y Ambient. 2019;121.
Valdez J. Optimización del rendimiento y determinación del contenido de limoneno del aceite esencial de flavedo de mandarina. Universiada San Ignacio Loyola. 2017;38.
Shahidi F, Yeo JD. Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review. Int J Mol Sci 2018, Vol 19, Page 1573 [Internet]. 2018 May 25 [cited 2023 Jul 24];19(6):1573. Available from: https://www.mdpi.com/1422-0067/19/6/1573/htm DOI: https://doi.org/10.3390/ijms19061573
Londoño JA. Aprovechamiento de residuos de la agroindustria de cítricos : extracción y caracterización de flavonoides. Corp Univ Lasallista. 2010;21:395–416.
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A, Vo DVN, Prabhakar S. Techniques and modeling of polyphenol extraction from food: a review [Internet]. Vol. 19, Environmental Chemistry Letters. Springer International Publishing; 2021. 3409–3443 p. Available from: https://doi.org/10.1007/s10311-021-01217-8 DOI: https://doi.org/10.1007/s10311-021-01217-8
Alara OR, Abdurahman NH, Ukaegbu CI. Extraction of phenolic compounds: A review. Curr Res Food Sci [Internet]. 2021;4(February):200–14. Available from: https://doi.org/10.1016/j.crfs.2021.03.011 DOI: https://doi.org/10.1016/j.crfs.2021.03.011
Dzah CS, Duan Y, Zhang H, Wen C, Zhang J, Chen G, et al. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci [Internet]. 2020;35(February):100547. Available from: https://doi.org/10.1016/j.fbio.2020.100547 DOI: https://doi.org/10.1016/j.fbio.2020.100547
Kumar K, Srivastav S, Sharanagat VS. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason Sonochem [Internet]. 2021;70:105325. Available from: https://doi.org/10.1016/j.ultsonch.2020.105325 DOI: https://doi.org/10.1016/j.ultsonch.2020.105325
Pássaro CP, Londoño J. Industrialización de cítricos y valor agregado [Internet]. Cítricos: Cultivo, Poscosecha e Industrialización. 2012. 307–342 p. Available from: http://repository.lasallista.edu.co/dspace/bitstream/10567/452/1/citricos.pdf
Nipornram S, Tochampa W, Rattanatraiwong P, Singanusong R. Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chem [Internet]. 2018;241:338–45. Available from: https://doi.org/10.1016/j.foodchem.2017.08.114 DOI: https://doi.org/10.1016/j.foodchem.2017.08.114
Anticona M, Blesa J, Lopez-Malo D, Frigola A, Esteve MJ. Effects of ultrasound-assisted extraction on physicochemical properties, bioactive compounds, and antioxidant capacity for the valorization of hybrid Mandarin peels. Food Biosci [Internet]. 2021;42:101185. Available from: https://doi.org/10.1016/j.fbio.2021.101185 DOI: https://doi.org/10.1016/j.fbio.2021.101185
M’hiri N, Ioannou I, Mihoubi Boudhrioua N, Ghoul M. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod Process [Internet]. 2015;96:161–70. Available from: http://dx.doi.org/10.1016/j.fbp.2015.07.010 DOI: https://doi.org/10.1016/j.fbp.2015.07.010
Ramírez C. Evaluación de la extracción de flavonoides a partir de la cáscara de naranja. Fund Univ Américas. 2020;11.
Tarazona N. Aislamiento de Hesperidina a partir de extractos etanólicos obtenidos de cáscara de mandarina y evaluación de su actividad antioxidante. Univ St Tomás [Internet]. 2016;109. Available from: https://doi.org/10.1016/j.eeh.2020.101342 DOI: https://doi.org/10.1016/j.eeh.2020.101342
Meneses NGT, Martins S, Teixeira JA, Mussatto SI. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep Purif Technol [Internet]. 2013;108:152–8. Available from: http://dx.doi.org/10.1016/j.seppur.2013.02.015 DOI: https://doi.org/10.1016/j.seppur.2013.02.015
Gutiérrez Pulido H, De la Vara Salazar R. ANÁLISIS Y DISEÑO DE EXPERIMENTOS. 2008. 564 p.
Ignat I, Volf I, Popa VI. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem [Internet]. 2011;126(4):1821–35. Available from: http://dx.doi.org/10.1016/j.foodchem.2010.12.026 DOI: https://doi.org/10.1016/j.foodchem.2010.12.026
Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, et al. Techniques for extraction of bioactive compounds from plant materials : A review. J Food Eng [Internet]. 2013;117(4):426–36. Available from: http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014 DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.014
Khan MK, Abert-Vian M, Fabiano-Tixier AS, Dangles O, Chemat F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem [Internet]. 2010;119(2):851–8. Available from: http://dx.doi.org/10.1016/j.foodchem.2009.08.046 DOI: https://doi.org/10.1016/j.foodchem.2009.08.046
Ma YQ, Chen JC, Liu DH, Ye XQ. Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrason Sonochem. 2009;16(1):57–62. DOI: https://doi.org/10.1016/j.ultsonch.2008.04.012
Al-Juhaimi FY. Citrus fruits by-products as sources of bioactive compounds with antioxidant potential. Pakistan J Bot. 2014;46(4):1459–62.
Singanusong R, Nipornram S, Tochampa W, Rattanatraiwong P. Low Power Ultrasound-Assisted Extraction of Phenolic Compounds from Mandarin (Citrus reticulata Blanco cv. Sainampueng) and Lime (Citrus aurantifolia) Peels and the Antioxidant. Food Anal Methods. 2015;8(5):1112–23. DOI: https://doi.org/10.1007/s12161-014-9992-6
Zhang H, Yang Y fei, Zhou Z qin. Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods. J Integr Agric. 2018 Jan;17(1):256–63. DOI: https://doi.org/10.1016/S2095-3119(17)61664-2
Romero Bayona LX. Efecto del grado de madurez del fruto (cáscara) de mandarina sobre el contenido de compuesto fenólicos: análisis cienciométrico. aproximación experimental y factibilidad económica. Univ St Tomás, Bucaramanga. 2022;(8.5.2017):2003–5.
Zhang Y, Sun Y, Xi W, Shen Y, Qiao L, Zhong L, et al. Phenolic compositions and antioxidant capacities of Chinese wild mandarin (Citrus reticulata Blanco) fruits. Food Chem. 2014;145:674–80. DOI: https://doi.org/10.1016/j.foodchem.2013.08.012
Mei Z, Zhang R, Zhao Z, Xu X, Chen B, Yang D, et al. Characterization of antioxidant compounds extracted from Citrus reticulata cv. Chachiensis using UPLC-Q-TOF-MS/MS, FT-IR and scanning electron microscope. J Pharm Biomed Anal [Internet]. 2021;192:113683. Available from: https://doi.org/10.1016/j.jpba.2020.113683 DOI: https://doi.org/10.1016/j.jpba.2020.113683
Gligor O, Mocan A, Moldovan C, Locatelli M, Crișan G, Ferreira ICFR. Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends Food Sci Technol [Internet]. 2019;88:302–15. Available from: https://doi.org/10.1016/j.tifs.2019.03.029 DOI: https://doi.org/10.1016/j.tifs.2019.03.029
Abeysinghe DC, Li X, Sun C De, Zhang WS, Zhou CH, Chen KS. Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem. 2007;104(4):1338–44. DOI: https://doi.org/10.1016/j.foodchem.2007.01.047
Ferreira SS, Silva AM, Nunes FM. Citrus reticulata Blanco peels as a source of antioxidant and anti-proliferative phenolic compounds. Ind Crops Prod. 2018;111(October 2017):141–8. DOI: https://doi.org/10.1016/j.indcrop.2017.10.009
Biesaga M. Influence of extraction methods on stability of flavonoids. J Chromatogr A. 2011;1218(18):2505–12. DOI: https://doi.org/10.1016/j.chroma.2011.02.059
Shorbagi M, Fayek NM, Shao P, Farag MA. Citrus reticulata Blanco (the common mandarin) fruit: An updated review of its bioactive, extraction types, food quality, therapeutic merits, and bio-waste valorization practices to maximize its economic value. Food Biosci. 2022;47(March):101699. DOI: https://doi.org/10.1016/j.fbio.2022.101699
Guntero V, Longo M, Ciparicci S, Martini R, Andreatta A. Comparación de métodos de extracción de polifenoles a partir de residuos de la industria vitivinícola. Asoc Argentina Ing Quim. 2015;(1):1–9.
Gao Y, Wang S, Dang S, Han S, Yun C, Wang W, et al. Optimized ultrasound-assisted extraction of total polyphenols from Empetrum nigrum and its bioactivities. J Chromatogr B. 2021 May 30;1173:122699. DOI: https://doi.org/10.1016/j.jchromb.2021.122699
Accepted 2024-02-08
Published 2023-09-08
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).