Adaptable Dimensional Models based on the Academic processes factors of the CNA institutional accreditation model
Main Article Content
In Colombia, the entity in charge of evaluating quality in higher education is the National Accreditation Council, which requires institutions to submit a self-evaluation report with quantitative data. This report often becomes a bottleneck because the data must be extracted from various sources. In this context, Data Warehouses are an alternative solution since they allow information to be centralized and support decision making. In this paper, seven dimensional models are proposed focused on three factors of the CNA related to Academic Processes: students, professors, and academic processes, which are adaptable to the data available in the institutions’ sources. For these models’ design, the literature was first reviewed to identify existing dimensional models focused on academic processes. Then, the DW development methodology for MSMEs was used, which allowed for the identification of the aspects to be evaluated of the study factors of the accreditation guidelines, the quantitative requirements present in the self-assessment reports for these factors, making a mapping between these factors, and validating these requirements by a group of accreditation experts. Then, the dimensional models to be designed to meet these requirements were identified. Their adaptability was validated by a group of experts in data warehouses, who considered that the seven proposed dimensional models have a 100% degree of adaptability to the identified requirements since these models can be adapted to the information available in the higher education institutions, with respect to more frequent, less frequent and proposed requirements.
Consejo Nacional de Acreditación, “Acuerdo 03 de 2014,” [Internet]. Bogotá, p. 32, 2014. [citado 15 junio 2022]. Disponible en: https://www.cna.gov.co/1779/articles-401372_norma.pdf
Consejo Nacional de Acreditación, “Fases proceso acreditación Institucional,” [Internet], 2023; [citado 20 junio 2022]. Disponible en: https://www.cna.gov.co/1779/w3-article-402695.html?_noredirect=1
Consejo Nacional de Acreditación, “Autoevaluación De Programas Académicos E Instituciones De Educación Superior,” [Internet], pp. 1–28, 2021; [citado 10 julio 2022]. Disponible en: https://www.cna.gov.co/1779/articles-404163_norma.pdf
Consejo Nacional de Acreditación, and Comisión Permanente del Sistema de Aseguramiento de la calidad, “Acuerdo 02 que actualiza el modelo de acreditación en alta calidad,” [Internet], pp. 1–63, 2020; [citado 10 julio 2022]. Disponible en: https://www.cna.gov.co/portal/
J. E. Martínez, S. Tobón, and A. Romero, “Problemáticas relacionadas con la acreditación de la calidad de la educación superior en América Latina,” Innovación Educ., vol. 17, no. 73, pp. 79–96, 2017.
G. E. Silva Peñafiel, V. M. Zapata Yánez, K. P. Morales Guamán, and L. M. Toaquiza Padilla, “Análisis de metodologías para desarrollar Data Warehouse aplicado a la toma de decisiones,” Cienc. Digit., vol. 3, no. 3.4, pp. 397–418, 2019, doi: https://doi.org/10.33262/cienciadigital.v3i3.4..922. DOI: https://doi.org/10.33262/cienciadigital.v3i3.4..922
R. Kimball and M. Ross, The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3d ed. John Wiley & Sons, Inc., 2013.
M. E. Mendoza, L. Durán, and N. Rivera, “MBD 1.0. Metodología de Desarrollo de Bodegas de Datos Para Micro, Pequeñas y Medianas Empresas,” UIS Ing., vol. 9, no. 1, pp. 85–101, 2010.
B. Kitchenham and P. Brereton, “A systematic review of systematic review process research in software engineering,” Inf. Softw. Technol., vol. 55, no. 12, pp. 2049–2075, 2013, doi: 10.1016/j.infsof.2013.07.010. DOI: https://doi.org/10.1016/j.infsof.2013.07.010
W. Boulila, M. Al-kmali, M. Farid, and H. Mugahed, “A business intelligence based solution to support academic affairs: case of Taibah University,” Wirel. Networks, vol. 3, 2018, doi: https://doi.org/10.1007/s11276-018-1880-3 DOI: https://doi.org/10.1007/s11276-018-1880-3
F. Medina, F. Fariña, and W. Castillo-Rojas, “Data Mart para obtención de indicadores de productividad académica en una universidad,” Ingeniare. Rev. Chil. Ing., vol. 26, pp. 88–101, 2018, doi: http://dx.doi.org/10.4067/S0718-33052018000500088. DOI: https://doi.org/10.4067/S0718-33052018000500088
I. Sutedja, P. Yudha, N. Khotimah, and C. Vasthi, “Building A Data Warehouse to support Active Student Management : Analysis and Design,” International Conference on Information Management and Technology (ICIMTech), Jakarta, Indonesia, 2018, pp. 460–465, 2018. DOI: https://doi.org/10.1109/ICIMTech.2018.8528196
E. Chandra, A. S. Girsang, R. Hadinata and S. M. Isa, “Analysis Students’ Graduation Eligibility Using Data Warehouse,” 2018. International Conference on Information Management and Technology (ICIMTech), Jakarta, Indonesia, 2018, pp. 61-64, doi: 10.1109/ICIMTech.2018.8528119. DOI: https://doi.org/10.1109/ICIMTech.2018.8528119
M. Sánchez Peralta, “Business Intelligence in E-Learning, a Case Study of an Ecuadorian University,” 2018. XIII Latin American Conference on Learning Technologies (LACLO), Sao Paulo, Brazil, 2018, pp. 29-32, doi: 10.1109/LACLO.2018.00016. DOI: https://doi.org/10.1109/LACLO.2018.00016
A. Maia, F. Portela and M. F. Santos, “Web Intelligence in Higher Education: A Study on the Usage of Business Intelligence Techniques in Education,” 2018. 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Barcelona, Spain, 2018, pp. 176-181, doi: 10.1109/W-FiCloud.2018.00034. DOI: https://doi.org/10.1109/W-FiCloud.2018.00034
A. A. Yulianto and Y. Kasahara, “Data Warehouse System for Multidimensional Analysis of Tuition Fee Level in Higher Education Institutions in Indonesia,” 2020. International Journal of Advanced Computer Science and Applications, vol. 11, no. 6, pp. 541-550 DOI: https://doi.org/10.14569/IJACSA.2020.0110666
D. Urrea Pito, E. Cerón Moreno, and M. Mendoza Becerra, “Bodega de datos con alta capacidad de análisis para el desempeño académico de Universidades,”. Investigación e Innovación en Ingenierías: Numero especial - XV Jornadas iberoamericanas de Ingeniería de Software e Ingeniería del Conocimiento - JIISIC. 2020, Nov. 2020, vol. 8, no. 3, pp. 102–118. doi: 10.17081/invinno.8.3.4707. DOI: https://doi.org/10.17081/invinno.8.3.4707
C. U. Serasinghe, D. C. R. Jayakody, K. T. M. N. Dayananda and D. Asanka, “Design and Implementation of Data Warehouse for a Higher Educational Institute in Sri Lanka,” 2021 6th International Conference for Convergence in Technology (I2CT), Maharashtra, India, 2021, pp. 1-5, doi: 10.1109/I2CT51068.2021.9417820. DOI: https://doi.org/10.1109/I2CT51068.2021.9417820
I. A. Najm et al., “OLAP Mining with Educational Data Mart to Predict Students’ Performance,” Informatica, vol. 46, no. 5, pp. 11–19, 2022, doi: 10.31449/inf.v46i5.3853. DOI: https://doi.org/10.31449/inf.v46i5.3853
ISO/IEC, “International Standard ISO/IEC 25010,” 2011.
Accepted 2023-08-23
Published 2023-06-26
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).