Main Article Content

Authors

This paper presents the implementation of technical tests to assess the behavior of M1 category passenger vehicles, specifically focusing on the measurement of the center of gravity, global stiffness, and comfort. The experimental procedures conducted adhere to the ISO 10392 and ISO 2631 standards, as well as the methodology established by SAE for flexural and torsional stiffness measurements. The JAC E10X car, a commercial electric hatchback that ranks among the top sellers in Colombia in 2023, was used as the test vehicle. It was found that the center of gravity of this car is displaced towards the passenger side and closer to the front axis. Nevertheless, its height falls within the measured range for other vehicles in its category. The obtained stiffness falls within the commonly accepted ranges in the industry. However, we observed that the presence of the battery package on the vehicle’s floor plays an important role in measuring this parameter. The comfort analysis was carried out in two scenarios: on roads with and without pavement. In both cases, the vehicle was categorized as “somewhat uncomfortable” according to the ISO 2631 standard. This finding holds significance considering the road conditions in developing countries like Colombia and the fact that the vehicle under study is brand new.  In addition to providing infrastructure that bolsters the automotive industry in Valle del Cauca, this work aims to contribute to technical, objective, and time analysis that leads to improving passenger safety, reducing maintenance costs, and establishing public policies related to the psychosocial risk of occupants and the quality of life of citizens. Likewise, the presented results highlight the need to establish more comprehensive mechanisms for inspecting vehicles marketed in the country. Finally, this study includes a description of the implemented tests, contributing to a better understanding vehicular behavior, as well as promoting vehicular road safety and providing technical support for decision-making in both the industry and government. All of this within the framework of the initiative to create an independent vehicle testing laboratory to strengthen the automotive sector in Colombia.

1.
Collazos-Burbano DA, Pazos Ospina JF, Ealo JL. Implementación de pruebas técnicas para la estimación de centro de gravedad, rigidez y confort en vehículos de pasajeros. Parte I. inycomp [Internet]. 2023 Sep. 8 [cited 2024 Dec. 21];25(Suplemento):e- 21113139. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13139

Solmaz S, Akar M, Shorten R. Online Center of Gravity Estimation in Automotive Vehicles using Multiple Models and Switching. En: 9th International Conference on Control, Automation, Robotics and Vision, IEEE; 2006. doi: 10.1109/icarcv.2006.345080. DOI: https://doi.org/10.1109/ICARCV.2006.345080

Zhao X, Jiang H, Zheng S, Han J. Precision Gravity Center Position Measurement System for Heavy Vehicles. Key Eng Mater. 2006; vol. 315–316: 788–791. doi: 10.4028/www.scientific.net/kem.315-316.788. DOI: https://doi.org/10.4028/www.scientific.net/KEM.315-316.788

Li A, Chen Y, Lin W, Du X. Estimation of Three-Dimensional Center of Gravity Relocation for Ground Vehicles with Tire Blowout. En American Control Conference (ACC), IEEE, 2022. doi: 10.23919/acc53348.2022.9867659. DOI: https://doi.org/10.23919/ACC53348.2022.9867659

Huang X, Wang J. Center of gravity height real-time estimation for lightweight vehicles using tire instant effective radius. Control Eng Pract. 2013 Apr;21(4):370-388. doi: 10.1016/j.conengprac.2012.12.003. DOI: https://doi.org/10.1016/j.conengprac.2012.12.003

Barbecho Morales B, Palacios Ortiz G. Diseño y construcción de un banco para la determinación del centro de gravedad y transferencia de pesos en vehículos livianos. Universidad Politécnica Saleciana, Ecuador; 2017.

Instituto Colombiano de Normas Técnicas y Certificación, “Vehículos automotores con los dos ejes. Determinación del centro de gravedad.” ICONTEC, 1996.

International Organization for Standardization, “ISO 10392:2011 Road vehicles — Determination of centre of gravity.” International Organization for Standardization, 2011.

Tebby S. Methods to Determine Torsion Stiffness in an Automotive Chassis. Comput Aided Des Appl. 2011 Dec;8: 67–75. doi: 10.3722/cadaps.2011.pace.67-75. DOI: https://doi.org/10.3722/cadaps.2011.PACE.67-75

Ramachandran R, Dehariya N K, Kumar G, Agarwal H, Singh S. Methodology to Measure BIW Torsional Stiffness and Study to Identify and Optimize Critical Panels. SAE Technical Paper Series, SAE International. 2015. doi: 10.4271/2015-26-0224. DOI: https://doi.org/10.4271/2015-26-0224

Helsen J, Cremers L, Mas P, Sas P. Global static and dynamic car body stiffness based on a single experimental modal analysis test. En: Proceedings of ISMA2010 – International Conference on Noise and Vibration Engineering including USD2010; 2010; p. 2505-2521..

Rediers B, Yang B, Juneja V. Static and Dynamic Stiffness: One Test, Both Results. En: Proceedings of the 16th International Modal Analysis Conference – IMAC; 1998; p. 30–35.

The Institut fur Kraftfahrzeuge. Stiffness relevance and strength relevance in crash of car body components. University of Aachen in Germany. Aachen (AL): European Aluminum Association. 2013.

Cardinale M, Pope M H. The effects of whole body vibration on humans: Dangerous or advantageous? Acta Physiol Hung. 2003 Sept;90(3):195–206. doi: 10.1556/aphysiol.90.2003.3.2. DOI: https://doi.org/10.1556/APhysiol.90.2003.3.2

Park S J, Subramaniyam M. Evaluating Methods of Vibration Exposure and Ride Comfort in Car. Journal of the Ergonomics Society of Korea. 2013 Aug;32(4):381–387. doi: 10.5143/jesk.2013.32.4.381. DOI: https://doi.org/10.5143/JESK.2013.32.4.381

Federación Española Empresarial de Transportes de Viajeros. Exposición a vibraciones en el sector del transporte de viajeros por carretera. Madrid (ES): ASINTRA. 2012.

Pujol Senovilla L. Exposición a vibraciones mecánicas: evaluación de riesgo (nota técnica de prevención). Madrid (ES): Instituto Nacional de Seguridad e Higiene en el Trabajo; 2009.

Wang X. Rationale and history of vehicle noise and vibration refinement. Vehicle Noise and Vibration Refinement. Elsevier; 2010. pp. 3–17. doi: 10.1533/9781845698041.1.3. DOI: https://doi.org/10.1533/9781845698041.1.3

Kumar A, Varghese M, Mohan D, Mahajan P, Gulati P, Kale S. Effect of Whole-Body Vibration on the Low Back. Spine (Phila Pa 1976). 1999 Dec; 24(23): 2506. doi: 10.1097/00007632-199912010-00013. DOI: https://doi.org/10.1097/00007632-199912010-00013

Carratù M, Pietrosanto A, Sommella P, Paciello V. Smart wearable devices for human exposure vibration measurements on two-wheel vehicles. ACTA IMEKO. 2020 Dec; 9(4): p. 121. doi: 10.21014/acta_imeko.v9i4.727. DOI: https://doi.org/10.21014/acta_imeko.v9i4.727

Linan X, Zhang E, Mingli L, Xiaochun S, Fan Z. Human vibration characteristic and experiment research on man-machine system in dynamic environment. En: 9th International Conference on Computer-Aided Industrial Design and Conceptual Design, IEEE; 2008. doi: 10.1109/caidcd.2008.4730545. DOI: https://doi.org/10.1109/CAIDCD.2008.4730545

Yanxi R, Qingxia L. Implementation of human vibration test and evaluation system based on virtual instrument. En: International Conference on Mechanic Automation and Control Engineering, IEEE; 2010. doi: 10.1109/mace.2010.5535864. DOI: https://doi.org/10.1109/MACE.2010.5535864

Feng Y, Jun X. Analysis of motorcycle vibration comfort based on rigid-flexible coupling model. Noise and Vibration Worldwide. 2020 Jun; 51(6):110–115. doi: 10.1177/0957456520923121. DOI: https://doi.org/10.1177/0957456520923121

Vallim M B, Dos Santos J M C, Costa A L A. Motorcycle Analytical Modeling Including Tire Wheel Nonuniformities for Ride Comfort Analysis. Tire Sci Technol. 2017 Apr; 45(2):101–120. doi: 10.2346/tire.17.450202. DOI: https://doi.org/10.2346/tire.17.450202

Yuan D M, Zheng X M, Yang Y. Modeling and Simulation of Motorcycle Ride Comfort Based on Bump Road. Adv Mat Res. 2010 Oct;139–141:2643–2647. doi: 10.4028/www.scientific.net/amr.139-141.2643. DOI: https://doi.org/10.4028/www.scientific.net/AMR.139-141.2643

Chen H C, Chen W C, Liu Y P, Chen C Y, Pan Y T. Whole-body vibration exposure experienced by motorcycle riders - An evaluation according to ISO 2631-1 and ISO 2631-5 standards. Int J Ind Ergon. 2009 Sept;39(5):708–718. doi: 10.1016/j.ergon.2009.05.002. DOI: https://doi.org/10.1016/j.ergon.2009.05.002

Dalawai P, Vyas N. Vibrational discomfort and motorcycle health assessment under engine excitation. International Journal of Vehicle Noise and Vibration. 2015;11(3/4):255. doi: 10.1504/ijvnv.2015.075168. DOI: https://doi.org/10.1504/IJVNV.2015.075168

Figlus T, Szafraniec P, Skrúcaný T. Methods of Measuring and Processing Signals during Tests of the Exposure of a Motorcycle Driver to Vibration and Noise. Int J Environ Res Public Health. 2019 Aug; 16(17):3145. doi: 10.3390/ijerph16173145. DOI: https://doi.org/10.3390/ijerph16173145

Liguori C, Paciello V, Paolillo A, Pietrosanto A, Sommella P. Characterization of motorcycle suspension systems: Comfort and handling performance evaluation. En: 2013 EEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE; 2013. doi: 10.1109/i2mtc.2013.6555457. DOI: https://doi.org/10.1109/I2MTC.2013.6555457

International Organization for Standardization. ISO 2631-1:2008 Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - part 1: general requirements. 2011.

Latin NCAP, Resultados evaluación vehículo JAC e10X. 2022. [Internet]. Disponible en: https://www.latinncap.com/en/result/173/jac-e-js1--e10x--e-s1--s1-+-2-airbags.

Hoeft F. Internal combustion engine to electric vehicle retrofitting: Potential customer’s needs, public perception and business model implications. Transportation Research Interdisciplinary Perspectives. 2021; 9:100330. doi. 10.1016/j.trip.2021.100330 DOI: https://doi.org/10.1016/j.trip.2021.100330

Auteco Mobility, “Automóvil JAC E10X.” 2022. [Internet]. Disponible en: https://www.autecomobility.com/automovil-hatchback-jac-e10x/p

K. Tse, “Trends in Vehicle CG Height and SSF.” 2022. [Internet]. Disponible en: https://kktse.github.io/jekyll/update/2022/07/28/trends-in-vehicle-cg-height-and-ssf.html

Milliken W F, Milliken D L. Race Car Vehicle Dynamics. Society of Automotive Engineers; 1995.

Danielsson O, González-Cocaña A, Ekström K, Bayani Khaknejad M, Klomp M, Dekker R. Influence of body stiffness on vehicle dynamics characteristics. En: The Dynamics of Vehicles on Roads and Tracks, CRC Press; 2016. p. 61–71. doi: 10.1201/b21185-6. DOI: https://doi.org/10.1201/b21185-6

Received 2023-08-15
Accepted 2023-08-24
Published 2023-09-08