Main Article Content

Authors

Mercury ions adsorption from an aqueous solution on iron nanoparticles supported on fique fiber was studied. Adsorption variables such as: pH effect, mercury ions ([Hg+2]) initial concentration and iron load (Fe% weight) in the adsorbent material were studied. The experimental results are presented allow to infer that the chemisorption mechanism predominates in the adsorption of mercury with respect to physisorption. Langmuir and Freundlich isotherms were used to describe the physical adsorption of mercury; Howe-ver, they failed to adequately describe most of the experimental isotherms obtained. It was established that the adsorption kinetics of mercury on the surface of the iron nano-particles supported on fique fiber is properly described by a pseudo-second order model that involves chemisorption (chemical reaction) as a rate control mechanism, indicating that the adsorption process is irreversible. pH has no apparent effect on adsorption in the pH range 4 to 7; However, at pH higher than 8, the adsorption capacity increases as the pH value increases.

1.
Zea H, Bastidas G. KG, Sierra CA. Adsorption of mercury on iron nanoparticles supported on Fique fiber: kinetics and adsorption isotherm. inycomp [Internet]. 2023 Sep. 8 [cited 2024 Dec. 21];25(Suplemento):e-30513109. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13109

“Mercury | US EPA.” https://www.epa.gov/mercury (accessed May 08, 2023).

C. O. R. Okpala, G. Sardo, S. Vitale, G. Bono, and A. Arukwe, “Hazardous properties and toxicological update of mercury: From fish food to human health safety perspective,” Crit Rev Food Sci Nutr, vol. 58, no. 12, pp. 1986–2001, 2018. DOI: https://doi.org/10.1080/10408398.2017.1291491

K. Eto, “Minamata disease,” Neuropathology, vol. 20, pp. 14–19, Sep. 2000, doi: 10.1046/j.1440-1789.2000.00295.x. DOI: https://doi.org/10.1046/j.1440-1789.2000.00295.x

“Alarma por altos niveles de mercurio en etnias amazónicas | EL ESPECTADOR.” https://www.elespectador.com/noticias/medio-ambiente/alarma-por-altos-niveles-de-mercurio-en-etnias-amazonicas/ (accessed Jul. 24, 2020).

“Environmental Laws that Apply to Mercury | US EPA.” https://www.epa.gov/mercury/environmental-laws-apply-mercury (accessed May 08, 2023).

A. Esmaeili, M. Mobini, and H. Eslami, “Removal of heavy metals from acid mine drainage by native natural clay minerals, batch and continuous studies,” Appl Water Sci, vol. 9, pp. 1–6, 2019. DOI: https://doi.org/10.1007/s13201-019-0977-x

M. M. Matlock, B. S. Howerton, and D. A. Atwood, “Chemical precipitation of heavy metals from acid mine drainage,” Water Res, vol. 36, no. 19, pp. 4757–4764, Nov. 2002, doi: 10.1016/S0043-1354(02)00149-5. DOI: https://doi.org/10.1016/S0043-1354(02)00149-5

Y. K. Henneberry, T. E. C. Kraus, J. A. Fleck, D. P. Krabbenhoft, P. M. Bachand, and W. R. Horwath, “Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts,” Science of The Total Environment, vol. 409, no. 3, pp. 631–637, Jan. 2011, doi: 10.1016/j.scitotenv.2010.10.030. DOI: https://doi.org/10.1016/j.scitotenv.2010.10.030

W. Zhang, L. Xia, K. M. Deen, E. Asselin, B. Ma, and C. Wang, “Enhanced removal of cadmium from wastewater by electro-assisted cementation process: A peculiar Cd reduction on Zn anode,” Chemical Engineering Journal, vol. 452, p. 139692, 2023. DOI: https://doi.org/10.1016/j.cej.2022.139692

Y. Ku, M.-H. Wu, and Y.-S. Shen, “Mercury removal from aqueous solutions by zinc cementation,” Waste Management, vol. 22, no. 7, pp. 721–726, Nov. 2002, doi: 10.1016/S0956-053X(02)00053-3. DOI: https://doi.org/10.1016/S0956-053X(02)00053-3

M. F. Can, F. Arslan, and M. S. Çelik, “Modelling of selective retention of Cd-Ni ions from aqueous solutions by polymer enhanced ultrafiltration,” Physicochemical Problems of Mineral Processing, vol. 58, 2022. DOI: https://doi.org/10.37190/ppmp/151913

Y. Uludag, H. Ö. Özbelge, and L. Yilmaz, “Removal of mercury from aqueous solutions via polymer-enhanced ultrafiltration,” J Memb Sci, vol. 129, no. 1, pp. 93–99, Jun. 1997, doi: 10.1016/S0376-7388(96)00342-0. DOI: https://doi.org/10.1016/S0376-7388(96)00342-0

A. Moghimi and M. Yari, “Review of procedures involving separation and Solid Phase Extraction for the determination of cadmium using spectrometric techniques,” J. Chem. Rev, vol. 1, no. 1, pp. 1–18, 2019. DOI: https://doi.org/10.33945/SAMI/JCR.2019.1.118

J. M. Lo, J. C. Yu, F. I. Hutchison, and C. M. Wai, “Solvent extraction of dithiocarbamate complexes and back-extraction with mercury(II) for determination of trace metals in seawater by atomic absorption spectrometry,” Anal Chem, vol. 54, no. 14, pp. 2536–2539, Dec. 1982, doi: 10.1021/ac00251a029. DOI: https://doi.org/10.1021/ac00251a029

M. J. López-Muñoz, J. Aguado, A. Arencibia, and R. Pascual, “Mercury removal from aqueous solutions of HgCl2 by heterogeneous photocatalysis with TiO2,” Appl Catal B, vol. 104, no. 3–4, pp. 220–228, May 2011, doi: 10.1016/j.apcatb.2011.03.029. DOI: https://doi.org/10.1016/j.apcatb.2011.03.029

L. Qi, F. Teng, X. Deng, Y. Zhang, and X. Zhong, “Experimental study on adsorption of Hg (II) with microwave-assisted alkali-modified fly ash,” Powder Technol, vol. 351, pp. 153–158, 2019. DOI: https://doi.org/10.1016/j.powtec.2019.04.029

A. K. Sen and A. K. De, “Adsorption of mercury(II) by coal fly ash,” Water Res, vol. 21, no. 8, pp. 885–888, Jan. 1987, doi: 10.1016/S0043-1354(87)80003-9. DOI: https://doi.org/10.1016/S0043-1354(87)80003-9

P. Czupryński, M. Płotka, P. Glamowski, W. Żukowski, and T. Bajda, “An assessment of an ion exchange resin system for the removal and recovery of Ni, Hg, and Cr from wet flue gas desulphurization wastewater—a pilot study,” RSC Adv, vol. 12, no. 9, pp. 5145–5156, 2022. DOI: https://doi.org/10.1039/D1RA09426B

S. Chiarle, M. Ratto, and M. Rovatti, “Mercury removal from water by ion exchange resins adsorption,” Water Res, vol. 34, no. 11, pp. 2971–2978, Aug. 2000, doi: 10.1016/S0043-1354(00)00044-0. DOI: https://doi.org/10.1016/S0043-1354(00)00044-0

J. Mantey et al., “Mercury contamination of soil and water media from different illegal artisanal small-scale gold mining operations (galamsey),” Heliyon, vol. 6, no. 6, p. e04312, 2020. DOI: https://doi.org/10.1016/j.heliyon.2020.e04312

G. Hilson, “Abatement of mercury pollution in the small-scale gold mining industry: Restructuring the policy and research agendas,” Science of The Total Environment, vol. 362, no. 1–3, pp. 1–14, Jun. 2006, doi: 10.1016/j.scitotenv.2005.09.065. DOI: https://doi.org/10.1016/j.scitotenv.2005.09.065

P. Hadi, M.-H. To, C.-W. Hui, C. S. K. Lin, and G. McKay, “Aqueous mercury adsorption by activated carbons,” Water Res, vol. 73, pp. 37–55, Apr. 2015, doi: 10.1016/j.watres.2015.01.018. DOI: https://doi.org/10.1016/j.watres.2015.01.018

B. S. Inbaraj, J. S. Wang, J. F. Lu, F. Y. Siao, and B. H. Chen, “Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid),” Bioresour Technol, vol. 100, no. 1, pp. 200–207, Jan. 2009, doi: 10.1016/j.biortech.2008.05.014. DOI: https://doi.org/10.1016/j.biortech.2008.05.014

W. Tariq, M. Saifullah, T. Anjum, M. Javed, N. Tayyab, and I. Shoukat, “Removal of heavy metals from chemical industrial wastewater using agro based bio-sorbents,” Acta Chemica Malaysia, vol. 2, no. 2, pp. 9–14, 2018.

A. Demirbas, “Heavy metal adsorption onto agro-based waste materials: A review,” J Hazard Mater, vol. 157, no. 2–3, pp. 220–229, Sep. 2008, doi: 10.1016/j.jhazmat.2008.01.024. DOI: https://doi.org/10.1016/j.jhazmat.2008.01.024

T. Cuervo, C. Sierra, and H. Zea, “Nanostructured MnO2 catalyst in E. crassipes (water hyacinth) for indigo carmine degradation,” Revista Colombiana de Química, vol. 45, no. 2, p. 30, 2016, doi: 10.15446/rev.colomb.quim.v45n2.60395. DOI: https://doi.org/10.15446/rev.colomb.quim.v45n2.60395

J. Wang, T. Wang, Q. Wang, and W.-P. Pan, “Removing ionic and organic mercury from light hydrocarbon liquids by ordered zeolite-templated carbon doped with sulphur,” J Clean Prod, vol. 339, p. 130698, 2022. DOI: https://doi.org/10.1016/j.jclepro.2022.130698

S. Vitolo and R. Pini, “Deposition of sulfur from H2S on porous adsorbents and effect on their mercury adsorption capacity,” Geothermics, vol. 28, no. 3, pp. 341–354, Jun. 1999, doi: 10.1016/S0375-6505(99)00012-7. DOI: https://doi.org/10.1016/S0375-6505(99)00012-7

X.-W. Wu, H.-W. Ma, J.-H. Li, J. Zhang, and Z.-H. Li, “The synthesis of mesoporous aluminosilicate using microcline for adsorption of mercury(II),” J Colloid Interface Sci, vol. 315, no. 2, pp. 555–561, Nov. 2007, doi: 10.1016/j.jcis.2007.06.074. DOI: https://doi.org/10.1016/j.jcis.2007.06.074

G. K. Darbha, A. Ray, and P. C. Ray, “Gold Nanoparticle-Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil, Water, and Fish,” ACS Nano, vol. 1, no. 3, pp. 208–214, Oct. 2007, doi: 10.1021/nn7001954. DOI: https://doi.org/10.1021/nn7001954

K. Bastidas, C. Sierra, and H. Zea, “Heterogeneous Fenton oxidation of Orange II using iron nanoparticles supported on natural and functionalized fique fiber,” J Environ Chem Eng, vol. 6, no. 4, pp. 4178–4188, Aug. 2018, doi: 10.1016/J.JECE.2018.06.001. DOI: https://doi.org/10.1016/j.jece.2018.06.001

K. G. Bastidas, M. F. R. Pereira, C. A. Sierra, and H. R. Zea, “Study and characterization of the lignocellulosic Fique (Furcraea Andina spp.) fiber,” Cellulose, vol. 29, no. 4, pp. 2187–2198, Mar. 2022, doi: 10.1007/S10570-021-04377-6/METRICS. DOI: https://doi.org/10.1007/s10570-021-04377-6

X. Guo, M. Li, A. Liu, M. Jiang, X. Niu, and X. Liu, “Adsorption mechanisms and characteristics of Hg2+ removal by different fractions of biochar,” Water (Basel), vol. 12, no. 8, p. 2105, 2020. DOI: https://doi.org/10.3390/w12082105

B. S. Inbaraj and N. Sulochana, “Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa,” J Hazard Mater, vol. 133, no. 1–3, pp. 283–290, May 2006, doi: 10.1016/J.JHAZMAT.2005.10.025. DOI: https://doi.org/10.1016/j.jhazmat.2005.10.025

Q. Hu, Y. Liu, C. Feng, Z. Zhang, Z. Lei, and K. Shimizu, “Predicting equilibrium time by adsorption kinetic equations and modifying Langmuir isotherm by fractal-like approach,” J Mol Liq, vol. 268, pp. 728–733, 2018. DOI: https://doi.org/10.1016/j.molliq.2018.07.113

Y. Liu, “Some consideration on the Langmuir isotherm equation,” Colloids Surf A Physicochem Eng Asp, vol. 274, no. 1–3, pp. 34–36, Feb. 2006, doi: 10.1016/J.COLSURFA.2005.08.029. DOI: https://doi.org/10.1016/j.colsurfa.2005.08.029

G. Castellar, E. Angulo, A. Zambrano, and D. Charris, “Equilibrio de adsorción del colorante azul de metileno sobre carbón activado,” Revista UDCA Actualidad & Divulgación Científica, vol. 16, no. 1, pp. 263–271, 2013. DOI: https://doi.org/10.31910/rudca.v16.n1.2013.882

X. Sun, J. Y. Hwang, and S. Xie, “Density functional study of elemental mercury adsorption on surfactants,” Fuel, vol. 90, no. 3, pp. 1061–1068, Mar. 2011, doi: 10.1016/J.FUEL.2010.10.043. DOI: https://doi.org/10.1016/j.fuel.2010.10.043

P. N. Diagboya, B. I. Olu-Owolabi, and K. O. Adebowale, “Synthesis of covalently bonded graphene oxide–iron magnetic nanoparticles and the kinetics of mercury removal,” RSC Adv, vol. 5, no. 4, pp. 2536–2542, Dec. 2014, doi: 10.1039/C4RA13126F. DOI: https://doi.org/10.1039/C4RA13126F

M. E. A. El-Sayed, “Nanoadsorbents for water and wastewater remediation,” Science of the Total Environment, vol. 739, p. 139903, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.139903

Y. C. Sharma, V. Srivastava, V. K. Singh, S. N. Kaul, and C. H. Weng, “Nano‐adsorbents for the removal of metallic pollutants from water and wastewater,” https://doi.org/10.1080/09593330902838080, vol. 30, no. 6, pp. 583–609, 2009, doi: 10.1080/09593330902838080. DOI: https://doi.org/10.1080/09593330902838080

E. Vélez et al., “Mercury removal in wastewater by iron oxide nanoparticles,” in Journal of Physics: Conference Series, IOP Publishing, 2016, p. 012050. DOI: https://doi.org/10.1088/1742-6596/687/1/012050

H. Parham, B. Zargar, and R. Shiralipour, “Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole,” J Hazard Mater, vol. 205, pp. 94–100, 2012. DOI: https://doi.org/10.1016/j.jhazmat.2011.12.026

K. Kadirvelu, M. Kavipriya, C. Karthika, N. Vennilamani, and S. Pattabhi, “Mercury (II) adsorption by activated carbon made from sago waste,” Carbon N Y, vol. 42, no. 4, pp. 745–752, 2004. DOI: https://doi.org/10.1016/j.carbon.2003.12.089

A. P. Ramírez, S. Giraldo, E. Flórez, and N. Acelas, “Preparación de carbón activado a partir de residuos de palma de aceite y su aplicación para la remoción de colorantes Preparation of activated carbon from palm oil wastes and their application for methylene blue removal Abstract Preparação de carvão ativa,” Afinidad, vol. 559, pp. 203–210, 2012.

C. Namasivayam and K. Periasamy, “Bicarbonate-treated peanut hull carbon for mercury (II) removal from aqueous solution,” Water Res, vol. 27, no. 11, pp. 1663–1668, 1993. DOI: https://doi.org/10.1016/0043-1354(93)90130-A

C. B. Lopes et al., “Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate,” J Hazard Mater, vol. 175, no. 1–3, pp. 439–444, 2010. DOI: https://doi.org/10.1016/j.jhazmat.2009.10.025

M. K. Sreedhar, A. Madhukumar, and T. S. Anirudhan, “Evaluation of an adsorbent prepared by treating coconut husk with polysulphide for the removal of mercury from wastewater,” 1999.

Bastidas Gomez K. Wastewater treatment using an iron nanocatalyst supported on Fique fibers. [tesis de maestría en Internet]. Universidad Nacional de Colombia, Sede Bogotá, 2016. [citada 6 Jun 2023]. 62 P. Disponible en: https://repositorio.unal.edu.co/handle/unal/58878

T. Budinova, N. Petrov, J. Parra, and V. Baloutzov, “Use of an activated carbon from antibiotic waste for the removal of Hg (II) from aqueous solution,” J Environ Manage, vol. 88, no. 1, pp. 165–172, 2008. DOI: https://doi.org/10.1016/j.jenvman.2007.02.005

Received 2023-08-03
Accepted 2023-08-17
Published 2023-09-08