Methodologies for the evaluation of energy efficiency in university buildings: Literature review
Main Article Content
Various factors, as well as the use and type of activities carried out in buildings, play an important role in their efficiency and energy behavior. The consideration and knowledge of these factors, uses and activities are necessary to propose actions that help improve their energy performance and apply integrated solutions to their needs. Various methodologies are used to evaluate their behavior and energy efficiency. However, for university buildings, conventional methodologies need to be adjusted for their correct application. This contribution presents a literary review on the methodologies for the evaluation of energy efficiency in university buildings, which was carried out using a methodology oriented towards bibliographic and bibliometric analysis, respectively. The review allowed us to conclude that the methodologies for this purpose correspond mainly to audits, modeling and simulation, comparative evaluations, and advanced measurements.
- Salaet, S., & Roca, J. (2010). Agotamiento de los combustibles fósiles y emisiones de CO2: algunos posibles escenarios futuros de emisiones. Revista Galega de Economía, 19(1), 1–19.
- Montt, G., Fraga, F., & Harsdorff, M. (2018). The future of work in a changing natural environment: Climate change, degradation and sustainability. International Labour Office – ILO, Geneva. Available in: https://www.ilo.org/wcmsp5/groups/public/---dgreports/---cabinet/documents/publication/wcms_644145.pdf
- Anne, P., & Velenfurt, P. (2021). Principles for a sustainable circular economy. Sustainable Production and Consumption, 27, 1437-1457. DOI: https://doi.org/10.1016/j.spc.2021.02.018
- UPME. (2016). Plan de acción indicativo de eficiencia energética 2017-2022.
- Ministerio de Minas y Energía. (2022). Programa de Uso Racional y Eficiente de la Energía.
- Arango, M. (2019, March). Panorama energético de Colombia. Bancolombia. https://www.bancolombia.com/empresas/capital-inteligente/especiales/especial-energia-2019/panomara-energetico-colombia
- Nepal, R. & Paija, N. (2019). Energy security, electricity, population and economic growth: The case of a developing South Asian resource-rich economy. Energy Policy, 132, 771-781. https://doi.org/10.1016/j.enpol.2019.05.054 DOI: https://doi.org/10.1016/j.enpol.2019.05.054
- Muzayanah, I., Lean, H., Hartono, D., Indraswari, K., & Partama, R. (2022). Population density and energy consumption: A study in Indonesian provinces. Heliyon, 8 (9), e10634, https://doi.org/10.1016/j.heliyon.2022.e10634 DOI: https://doi.org/10.1016/j.heliyon.2022.e10634
- IEA. (2020). GlobalABC Regional Roadmap for Buildings and Construction in Latin America 2020-2050. International Energy Agency – IEA. Available in:
- UNEP. (2020). Emisiones del sector de los edificios alcanzaron nivel récord en 2019: informe de la ONU.
- Ministerio de Educación. (2022). Matrícula en educación superior 2021. Julio 1, 2022. Disponible en: https://snies.mineducacion.gov.co/1778/articles-401926_recurso_1.pdf
- Ministerio de Vivienda, Construcción y Saneamiento. (2015). Código Técnico de Construcción Sostenible. Disponible en:
- Proyecto CEELA. (2022). Estudio de casos normativos en los países del Proyecto CEELA. World Green Building Council. Disponible en: https://osc.dnp.gov.co/administrator/components/com_publicaciones/uploads/Estudio_de_Casos_Normativos_en_los_pases__del_Proyecto_CEELA.pdf
- Niño, D., & Ortiz, I. (2011). Evaluación del consumo de energía en función de las tendencias de ocupación de la sede central de la Universidad Industrial de Santander. Universidad Industrial de Santander.
- UPME. (2022). Resumen ejecutivo del Plan de Acción Indicativo PAI-PROURE 2021-2030. Disponible en:
- Global Alliance for Buildings and Construction. (2022). Informe sobre la situación mundial de los edificios y la construcción en 2022: Hacia un sector de los edificios y la construcción con cero emisiones, eficiente y resistente; (citado el 14 de julio 2023). (internet). Disponible en:
https://globalabc.org/sites/default/files/2022-11/SPANISH_Executive%20Summary_Buildings-GSR_0.pdf
- Universidad EAFIT. (2021). Búsqueda de Información en la Web. Programa de Formación en Competencias Informacionales 2021. Disponible en: https://repository.eafit.edu.co/bitstream/handle/10784/12970/Busqueda_de_informacion_en_la_Web_2021.pdf;jsessionid=0FF074F979AB0D873EC8E8A546A47DEB?sequence=2
- Barbosa, C., Barbosa, H., & Rodríguez, V. (2013). Revisión y análisis documental para estado del arte: una propuesta metodológica desde el contexto de la sistematización de experiencias educativa. Investigación Bibliotecológica, 27 (61), 83-105. DOI: https://doi.org/10.1016/S0187-358X(13)72555-3
- van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84 (2): 523-528. Software survey: VOSviewer, a computer program for bibliometric mapping | SpringerLink DOI: https://doi.org/10.1007/s11192-009-0146-3
- United Nations Industrial Development Organization – UNIDO. (2018). Introduction and User Manual: Sustainable energy regulation and policymaking for Africa. Available in: https://www.uncclearn.org/wp-content/uploads/library/manuals-all_0.pdf
- European Commission. (2020). Energy efficiency in buildings. European Commission – Department: Energy – In Focus. Available in:
https://commission.europa.eu/system/files/2020-03/in_focus_energy_efficiency_in_buildings_en.pdf
- Baines, E., & Blatchford, P. (2019). School break and lunch times and young people’s social lives: A follow-up national study. Final Report. Research funded by the Nuffield Foundation, May. Available in: https://www.nuffieldfoundation.org/wp-content/uploads/2019/05/Final-report-School-break-and-lunch-times-and-young-peoples-lives-A-follow-up-national-study.pdf
- Holechek, J., Geli, H., Sawalhah, M., & Valdez, R. (2022). A global assessment: Can renewable energy place fossil fuels by 2050? Sustainability, 14 (8), 4792. https://doi.org/10.3390/su14084792 DOI: https://doi.org/10.3390/su14084792
- Osman, A., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzi, S., Rooney, D.W., & Yap, P.S. (2022). Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environmental Chemistry Letters, 21, 741-764. https://doi.org/10.1007/s10311-022-01532-8 DOI: https://doi.org/10.1007/s10311-022-01532-8
- Di Foggia, G. (2018). Energy efficiency measures in buildings for achieving sustainable development goals. Heliyon, 4 (11), e00953. https://doi.org/10.1016/j.heliyon.2018.e00953 DOI: https://doi.org/10.1016/j.heliyon.2018.e00953
- Torres, J. (2018). Metodología integrada de un sistema de gestión de energía para edificaciones [Tesis de Maestría]. Universidad Nacional de Colombia.
- Villamizar, M. (2016). Modelo de gestión y valoración de la eficiencia energética en proyectos de vivienda multifamiliar de costo medio en Colombia. [Tesis de Maestría]. Universidad Nacional de Colombia.
- Hernández, J. (2013). Metodología basada en ACV para la evaluación de sostenibilidad en edificios. [Tesis de Maestría]. Universitat Politécnica de Catalunya.
- González, R. (2007). Caracterización y evaluación energética de edificios existentes en base a medidas. Aplicación al sector residencial. [Tesis Doctoral]. Universidad de Sevilla.
- Gavilán, C. (2017). Análisis comparativo de la eficiencia energética en edificios existentes con diferentes herramientas de simulación energética. [Tesis Doctoral]. Universidad de Valladolid.
- Suárez, M. (2021). Gestión energética en edificios inteligentes usando optimización convexa. [Tesis de Maestría]. Universidad Tecnológica de Pereira.
- Instituto de la Construcción de Chile. (2012). Manual de Gestión de la Energía en Edificio Públicos. Proyecto Innova Chile – 09CN14-5706. Ministerio de Educación.
- Labiano, W, & Medina, G. (2006). Diagnóstico Energético de la Universidad Autónoma de Occidente [Pregrado]. Universidad Autónoma de Occidente.
- Gil, P. (2010). Evaluación del comportamiento energético edificio Vertex. [Tesis de Maestría]. Universitat Politécnica de Catalunya.
- Gago, E., García, J & Estrella, A. (2011). Development of an energy model for the residential sector: Electricity consumption in Andalusia, Spain. Energy and Buildings, 43(6), 1315–1321. https://doi.org/10.1016/j.enbuild.2011.01.016 DOI: https://doi.org/10.1016/j.enbuild.2011.01.016
- Valderrama, C., Cohen, A., Lagiere, P., & Puiggali, J. (2011). Análisis del comportamiento energético en un conjunto de edificios multifuncionales, Caso de estudio Campus Universitario. Revista de La Construcción, 10(2), 26-39. http://dx.doi.org/10.4067/S0718-915X2011000200004 DOI: https://doi.org/10.4067/S0718-915X2011000200004
- Nord, N., & Sjøthun, S. (2014). Success factors of energy efficiency measures in buildings in Norway. Energy and Buildings, 76, 476–487. https://doi.org/10.1016/j.enbuild.2014.03.010 DOI: https://doi.org/10.1016/j.enbuild.2014.03.010
- Mena, V., Quesada, M., López, C., & Serrano, A. (2015). Energetic efficiency in residential buildings. ESTOA, 4(7), 63–72. https://doi.org/10.18537/est.v004.n007.07 DOI: https://doi.org/10.18537/est.v004.n007.07
- Rojas, D. (2016). Diagnóstico energético y propuesta de mejoramiento de la eficiencia energética de un edificio existente [Tesis Maestría]. Universidad Nacional de Colombia Sede Bogotá.
- Farinango, C. (2020). Evaluación del consumo energético y huella de carbono de edificio FICAYA de la Universidad Técnica del Norte. [Pregrado]. Universidad Técnica del Norte.
- ARCONEL (2018). Manual para la recopilación de la información del sector eléctrico a través del sistema SISDAT (Sistematización de datos del sector eléctrico). Recuperado de https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2019/06/Anexo-5.-Manual-SISDAT-Participantes.pdf
- Kanoglu, M., Dincer, I., & Rosen, M. (2007). Understanding energy and exergy efficiencies for improved energy management in power plants. Energy Policy, 35, 3967 - 3978. https://doi.org/10.1016/j.enpol.2007.01.015 DOI: https://doi.org/10.1016/j.enpol.2007.01.015
- Saidur, R., Ahamed, J. & Masjuki, H. (2010). Energy, exergy and economic analysis of
industrial boilers. Energy Policy, 38, 2188 – 2197. https://doi.org/10.1016/j.enpol.2009.11.087 DOI: https://doi.org/10.1016/j.enpol.2009.11.087
- Dufour, J. (2009, January). Exergía y Sostenibilidad. https://www.Madrimasd.Org/Blogs/Energiasalternativas/2009/01/27/111829.
- Bosu, I., Mahmoud, H., & Hassan, H. (2023). Energy audit, techno-economic, and environmental assessment of integrating solar technologies for energy management in a university residential building: A case study. Applied Energy, 341, 121141. https://doi.org/10.1016/J.APENERGY.2023.121141 DOI: https://doi.org/10.1016/j.apenergy.2023.121141
- Pérez, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394–398. https://doi.org/10.1016/J.ENBUILD.2007.03.007 DOI: https://doi.org/10.1016/j.enbuild.2007.03.007
- Litardo, J., Hidalgo, R., & Soriano, G. (2021). Energy Performance and Benchmarking for University Classrooms in Hot and Humid Climates. Energies, 14(21), 7013. https://doi.org/10.3390/en14217013 DOI: https://doi.org/10.3390/en14217013
- Agencia Chilena de Eficiencia Energética – AChEE (2014). Guía de Apoyo al Desarrollo de Diagnósticos Energéticos para Instituciones de Educación Superior (IES). AChEE. Disponible en: https://sustentabilidad.utem.cl/wp-content/uploads/2017/05/9.-GU%C3%8DA-DIAGN%C3%93STICOS-ENERG%C3%89TICOS.pdf
- Omar, O. (2018). Intelligent building, definitios, factors and evaluation criteria of selection. Alexandria Engineering Journal, 57 (4), 2903-2910. https://doi.org/10.1016/j.aej.2018.07.004 DOI: https://doi.org/10.1016/j.aej.2018.07.004
- Gamal, M., & Corvacho, H. (2022). Compliance with building energy code for the residential sector in Egyptian hot-arid climate: Potential impact, difficulties, and further improvements. Sustainability, 14 (7), 3396, https://doi.org/10.3390/su14073936
- Cheng, C. (2021). Adaptation of buildings for climate change: A literature review. [Thesis MSc.]. University of Gävle.
Schiano, R., Goncalves, J., & Vallejo, J. (2022). Pedagogy pro-desing and climate literacy: Teaching methods and research approaches for sustainable architecture. Compliance with building energy code for the residential sector in Egyptian hot-arid climate: Potential impact, difficulties, and further improvements. Sustainability, 14 (11), 6791. https://doi.org/10.3390/su14116791 DOI: https://doi.org/10.3390/su14073936
- Zhang, S., Oclón, P., Klemes, J., Michorczyk, P., Pielichowska, K., & Pielicjowski, K. (2022). Renewable energy systems for building heating, cooling and electricity production with thermal energy storage. Renewable and Sustainable Energy Reviews. 165, 112560. https://doi.org/10.1016/j.rser.2022.112560 DOI: https://doi.org/10.1016/j.rser.2022.112560
- Jia, L., Han, J., Chen, Xi, Li, Q.Y., Lee, C.C., & Fung, Y.T. (2021). Interaction between thermal comfort, indoor air quality and ventilation energy consumption of educational buildings: A comprehensive review. Buildings, 11 (12), 591. https://doi.org/10.3390/buildings11120591 DOI: https://doi.org/10.3390/buildings11120591
- Holguín, G., Llosas, Y., & Pérez III, J. (2021). Evaluación del sistema eléctrico de edificios de propósito educativo con respecto al uso racional y eficiente de la energía eléctrica. 6(5), 1169–1196. https://doi.org/10.23857/pc.v6i5.2738
- Arce, J. (2015). Metodología para implementar un sistema de gestión de energía en una instalación institucional, basado en la norma NTC-ISO 50001 Caso: Instituto Técnico Industrial Francisco José de Caldas [Pregrado]. Universidad Distrital Francisco José de Caldas.
- Dubois, M., & Blomsterberg, Å. (2011). Energy saving potential and strategies for electric lighting in future north european, low energy office buildings: A literature review. In Energy and Buildings (Vol. 43, Issue 10, pp. 2572–2582). Elsevier Ltd. https://doi.org/10.1016/j.enbuild.2011.07.001 DOI: https://doi.org/10.1016/j.enbuild.2011.07.001
- Xu, P., Chan, E. H. W., & Qian, Q. K. (2011). Success factors of energy performance contracting (EPC) for sustainable building energy efficiency retrofit (BEER) of hotel buildings in China. Energy Policy, 39(11), 7389–7398. https://doi.org/10.1016/J.ENPOL.2011.09.001 DOI: https://doi.org/10.1016/j.enpol.2011.09.001
- Carriço de Lima Montenegro Duarte, J., Ramos, B., Dias Barreto de Souza, A., de Lima Tostes, M., & Holanda, U. (2021). Building Information Modeling approach to optimize energy efficiency in educational buildings. Journal of Building Engineering, 43. https://doi.org/10.1016/j.jobe.2021.102587 DOI: https://doi.org/10.1016/j.jobe.2021.102587
Accepted 2023-09-05
Published 2023-09-08
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).