Contenido principal del artículo

Autores

La piña es una fruta tropical con alta demanda para su industrialización. Sin embargo, sólo entre en 30 y el 50% del peso total del fruto es aprovechable lo que genera un alto volumen de residuos contaminantes. El objetivo de esta investigación fue extraer compuestos fenólicos de residuos agroindustriales de piña mediante tecnologías amigables.  Se evaluó el efecto del secado empleando la tecnología de hidrosecado conductivo (muestra fresca y seca) y el efecto del tipo de solvente de punto eutéctico profundo (cloruro de colina - ácido málico y cloruro de colina – glicerol) sobre la extracción asistida por microondas de compuestos fenólicos de cáscara de piña. Se determinó el contenido total de compuestos fenólicos, el rendimiento del proceso, la capacidad antioxidante y el porcentaje de inhibición del radical DPPH. El secado tuvo efecto significativo sobre las variables de respuesta y, en general, el tipo de solvente no tuvo efecto. La mayor concentración de compuestos fenólicos fue 26.29 ± 5.22 mg GAE/g ms, con un rendimiento de 2.6288 ± 0.5220 % (g GAE/g ms) y una capacidad antioxidante de 2.4816 ± 0.0779 mM TE/g. Los extractos obtenidos a partir de muestra seca presentaron la mayor capacidad antioxidante (88.08 ± 1.44% de inhibición del radical DPPH). Estos resultados indican que el uso de tecnologías verdes de extracción es una alternativa viable para la valorización de residuos de piña, comparado con la extracción con etanol.

1.
Vargas Serna CL, Latorre-Castaño D, Nadezda M-M, Claudia I O-M, Vélez-Pasos C. Obtención de polifenoles de cáscara de piña usando hidrosecado conductivo-microondas y solventes de punto eutéctico profundo. inycomp [Internet]. 4 de octubre de 2023 [citado 27 de abril de 2024];25(Suplemento):e-20413074. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13074

FAO. FAOSTAT [Internet]. 2022 [cited 2022 May 30]. Available from: https://www.fao.org/faostat/es/

Trade Map. Base de datos estadístico del comercio exterior. [Internet]. 2019 [cited 2022 May 30]. Available from: https://www.trademap.org/Index.aspx

Sepúlveda L, Romaní A, Aguilar CN, Teixeira J. Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. Innovative Food Science and Emerging Technologies [Internet]. 2018;47:38–45. Available from: https://doi.org/10.1016/j.ifset.2018.01.012 DOI: https://doi.org/10.1016/j.ifset.2018.01.012

Cárdenas G, Arrazola G, Villalba M. Frutas tropicales: fuente de compuestos bioactivos naturales en la industria de alimentos. Ingenium. 2016;17(33):29–40. DOI: https://doi.org/10.21500/01247492.2152

Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International [Internet]. 2022 Jul;157:111268. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0963996922003258 DOI: https://doi.org/10.1016/j.foodres.2022.111268

Ekezie FGC, Sun DW, Cheng JH. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends Food Sci Technol. 2017;67:160–72. DOI: https://doi.org/10.1016/j.tifs.2017.06.006

Motta Soler ÁM. EVALUACIÓN DE UN SOLVENTE VERDE PARA LA EXTRACCIÓN DE LÍPIDOS A PARTIR DE BIOMASA DE MICROALGAS A ESCALA LABORATORIO. FUNDACIÓN UNIVERSIDAD DE AMÉRICA FACULTAD DE INGENIERÍAS. 2019;4(1):75–84.

Jablonský M, Škulcová A, Malvis A, Šima J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J Biotechnol. 2018;282:46–66. DOI: https://doi.org/10.1016/j.jbiotec.2018.06.349

Ozturk B, Parkinson C, Gonzalez-Miquel M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep Purif Technol [Internet]. 2018 [cited 2018 Sep 12];206:1–13. Available from: https://doi.org/10.1016/j.seppur.2018.05.052 DOI: https://doi.org/10.1016/j.seppur.2018.05.052

Smith EL, Abbott AP, Ryder KS. Deep Eutectic Solvents (DESs) and Their Applications. Chem Rev. 2014;114(21):11060–82. DOI: https://doi.org/10.1021/cr300162p

García A, Rodríguez-Juan E, Rodríguez-Gutiérrez G, Rios JJ, Fernández-Bolaños J. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 2016;197:554–61. DOI: https://doi.org/10.1016/j.foodchem.2015.10.131

Zhou P, Wang X, Liu P, Huang J, Wang C, Pan M, et al. Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Ind Crops Prod. 2018;120:147–54. DOI: https://doi.org/10.1016/j.indcrop.2018.04.071

Rajha HN, Mhanna T, Kantar S el, Khoury A el, Louka N, Maroun RG. Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. LWT - Food Science and Technology [Internet]. 2019 [cited 2020 May 4];111:138–46. Available from: https://doi.org/10.1016/j.lwt.2019.05.004 DOI: https://doi.org/10.1016/j.lwt.2019.05.004

Zannou O, Pashazadeh H, Galanakis CM, Alamri AS, Koca I. Carboxylic acid-based deep eutectic solvents combined with innovative extraction techniques for greener extraction of phenolic compounds from sumac (Rhus coriaria L.). J Appl Res Med Aromat Plants. 2022 Sep;30:100380. DOI: https://doi.org/10.1016/j.jarmap.2022.100380

Alonso DA, Baeza A, Chinchilla R, Gómez C, Guillena G, Marset X, et al. Mezclas eutécticas como alternativa sostenible a los disolventes convencionales en Química Orgánica. Vol. 114, An. Quím. 2018.

da Silva DI, Nogueira GD, Duzzioni AG, Barrozo MA. Changes of antioxidant constituents in pineapple (Ananas comosus) residue during drying process. Ind Crops Prod. 2013;50:557–62. DOI: https://doi.org/10.1016/j.indcrop.2013.08.001

Sogi DS, Siddiq M, Greiby I, Dolan KD. Total phenolics, antioxidant activity, and functional properties of “Tommy Atkins” mango peel and kernel as affected by drying methods. Food Chem. 2013;141(3):2649–55. DOI: https://doi.org/10.1016/j.foodchem.2013.05.053

Dorta E, Lobo MG, González M. Using drying treatments to stabilise mango peel and seed: Effect on antioxidant activity. LWT - Food Science and Technology [Internet]. 2012;45(2):261–8. Available from: http://dx.doi.org/10.1016/j.lwt.2011.08.016 DOI: https://doi.org/10.1016/j.lwt.2011.08.016

Sukadeetad K, Nakbanpote W, Heinrich M, Nuengchamnong N. Effect of drying methods and solvent extraction on the phenolic compounds of Gynura pseudochina (L.) DC. leaf extracts and their anti-psoriatic property. Ind Crops Prod. 2018 Sep 15;120:34–46. DOI: https://doi.org/10.1016/j.indcrop.2018.04.020

Jiménez D, Vardanega R, Salinas F, Espinosa-Álvarez C, Bugueño-Muñoz W, Palma J, et al. Effect of drying methods on biorefinery process to obtain capsanthin and phenolic compounds from Capsicum annuum L. Journal of Supercritical Fluids. 2021 Aug 1;174. DOI: https://doi.org/10.1016/j.supflu.2021.105241

Puente L, Vega-Gálvez A, Ah-Hen KS, Rodríguez A, Pasten A, Poblete J, et al. Refractance Window drying of goldenberry (Physalis peruviana L.) pulp: A comparison of quality characteristics with respect to other drying techniques. LWT. 2020 Sep 1;131:109772. DOI: https://doi.org/10.1016/j.lwt.2020.109772

Rajoriya D, Shewale SR, Bhavya ML, Hebbar HU. Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innovative Food Science and Emerging Technologies. 2020 Dec 1;66:102530. DOI: https://doi.org/10.1016/j.ifset.2020.102530

Waghmare R. Refractance window drying: A cohort review on quality characteristics. Vol. 110, Trends in Food Science and Technology. Elsevier Ltd; 2021. p. 652–62. DOI: https://doi.org/10.1016/j.tifs.2021.02.030

Baeghbali V, Niakousari M, Farahnaky A. Refractance Window drying of pomegranate juice: Quality retention and energy efficiency. LWT - Food Science and Technology. 2016;66:34–40. DOI: https://doi.org/10.1016/j.lwt.2015.10.017

Mercado-Ruiz JN, Tortoledo-Ortiz O, García-Robles JM, Báez-Sañudo R, Garcia-Moreno BY, Avila-Prado J, et al. Calidad comercial de piña MD2 (Ananas comosus L.) Tratada en postcosecha con ácido 2-hidroxibenzoico. Revista Iberoamericana de tecnología postcosecha [Internet]. 2016 [cited 2022 May 30];20(2):141–54. Available from: https://www.redalyc.org/journal/813/81361553004/

Cvjetko Bubalo M, Ćurko N, Tomašević M, Kovačević Ganić K, Radojčić Redovniković I. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016 Jun;200:159–66. DOI: https://doi.org/10.1016/j.foodchem.2016.01.040

Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2007;2(4):875–7. DOI: https://doi.org/10.1038/nprot.2007.102

Ballesteros LF, Cerqueira MA, Teixeira JA, Mussatto SI. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydr Polym. 2015;127:347–54. DOI: https://doi.org/10.1016/j.carbpol.2015.03.047

Wojeicchowski JP, Marques C, Igarashi-Mafra L, Coutinho JAP, Mafra MR. Extraction of phenolic compounds from rosemary using choline chloride – based Deep Eutectic Solvents. Sep Purif Technol. 2021 Mar 1;258:117975. DOI: https://doi.org/10.1016/j.seppur.2020.117975

Castrica M, Rebucci R, Giromini C, Tretola M, Cattaneo D, Baldi A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital J Anim Sci [Internet]. 2019 Jan 2 [cited 2020 Apr 26];18(1):336–41. Available from: https://www.tandfonline.com/doi/full/10.1080/1828051X.2018.1529544 DOI: https://doi.org/10.1080/1828051X.2018.1529544

Martínez-Ramírez A, Contreras-Esquivel JC, Belares-Cerda R. Extracción de Polifenoles Asistida por Microondas a Partir de Punica granatum L. Revista Científica de la Universidad Autónoma de Coahuila. 2010;2(4):1–5.

Domínguez CR, Avila JAD, Pareek S, Ochoa MAV, Zavala JFA, Yahia E, et al. Content of bioactive compounds and their contribution to antioxidant capacity during ripening of pineapple (Ananas comosus L.) cv. Esmeralda. Journal of Applied Botany and Food Quality. 2018;91:61–8.

de Lima Marsiglia WIM, Oliveira L de SC, Lucas Jacinto Almeida R, Santos NC, da Silva Neto JM, Santiago ÂM, et al. Thermal stability of total phenolic compounds and antioxidant activities of jaboticaba peel: Effect of solvents and extraction methods. Journal of the Indian Chemical Society. 2023 May 1;100(5). DOI: https://doi.org/10.1016/j.jics.2023.100995

Sousa BA, Correia RTP. Phenolic content, antioxidant activity and antiamylolytic activity of extracts obtained from bioprocessed pineapple and guava wastes. Brazilian Journal of Chemical Engineering [Internet]. 2012;29(01):25–30. Available from: www.abeq.org.br/bjche DOI: https://doi.org/10.1590/S0104-66322012000100003

Londoño Londoño J. Antioxidantes: importancia biológica y métodos para medir su actividad PARTE III. In: Desarrollo y transversalidad: serie Lasallista Investigación y CiEncia [Internet]. 2012 [cited 2022 May 30]. p. 129–62. Available from: http://hdl.handle.net/10567/133

Recibido 2023-07-21
Aceptado 2023-09-22
Publicado 2023-10-04