Main Article Content

Authors

Pineapple is a tropical fruit with high demand for its industrialization. However, only between 30 and 50% of the total weight of the fruit is usable, which generates a high volume of polluting residues. The objective of this research was to extract phenolic compounds from pineapple agroindustrial waste using friendly technologies. The effect of drying using conductive hydrodrying technology (fresh and dry sample) and the effect of the type of deep eutectic solvent (choline chloride - malic acid and choline chloride - glycerol) on the microwave-assisted extraction of Phenolic compounds from pineapple peel. The total content of phenolic compounds, the yield of the process, the antioxidant capacity and the percentage of inhibition of the DPPH radical were studied. Drying had a significant effect on the response variables and, in general, the type of solvent had no effect. The highest concentration of phenolic compounds was 26.29 ± 5.22 mg GAE/g ms, with a yield of 2.6288 ± 0.5220% (g GAE/g ms) and an antioxidant capacity of 2.4816 ± 0. 0779 mM TE/g. The extracts obtained from the dry sample presented the highest antioxidant capacity (88.08 ± 1.44% inhibition of the DPPH radical). These results indicate that the use of green extraction technologies is a viable alternative for the recovery of pineapple waste, compared to extraction with ethanol.


 

1.
Vargas-Serna CL, Latorre-Castaño D, Moreira-Muñoz N, Ochoa-Martínez CI, Vélez-Pasos C. Obtaining polyphenols from pineapple peel using microwave-conductive hydrodrying and deep eutectic solvents. inycomp [Internet]. 2023 Sep. 8 [cited 2024 Dec. 21];25(Suplemento):e-20413074. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13074

FAO. FAOSTAT [Internet]. 2022 [cited 2022 May 30]. Available from: https://www.fao.org/faostat/es/

Trade Map. Base de datos estadístico del comercio exterior. [Internet]. 2019 [cited 2022 May 30]. Available from: https://www.trademap.org/Index.aspx

Sepúlveda L, Romaní A, Aguilar CN, Teixeira J. Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. Innovative Food Science and Emerging Technologies [Internet]. 2018;47:38–45. Available from: https://doi.org/10.1016/j.ifset.2018.01.012 DOI: https://doi.org/10.1016/j.ifset.2018.01.012

Cárdenas G, Arrazola G, Villalba M. Frutas tropicales: fuente de compuestos bioactivos naturales en la industria de alimentos. Ingenium. 2016;17(33):29–40. DOI: https://doi.org/10.21500/01247492.2152

Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International [Internet]. 2022 Jul;157:111268. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0963996922003258 DOI: https://doi.org/10.1016/j.foodres.2022.111268

Ekezie FGC, Sun DW, Cheng JH. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends Food Sci Technol. 2017;67:160–72. DOI: https://doi.org/10.1016/j.tifs.2017.06.006

Motta Soler ÁM. EVALUACIÓN DE UN SOLVENTE VERDE PARA LA EXTRACCIÓN DE LÍPIDOS A PARTIR DE BIOMASA DE MICROALGAS A ESCALA LABORATORIO. FUNDACIÓN UNIVERSIDAD DE AMÉRICA FACULTAD DE INGENIERÍAS. 2019;4(1):75–84.

Jablonský M, Škulcová A, Malvis A, Šima J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J Biotechnol. 2018;282:46–66. DOI: https://doi.org/10.1016/j.jbiotec.2018.06.349

Ozturk B, Parkinson C, Gonzalez-Miquel M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep Purif Technol [Internet]. 2018 [cited 2018 Sep 12];206:1–13. Available from: https://doi.org/10.1016/j.seppur.2018.05.052 DOI: https://doi.org/10.1016/j.seppur.2018.05.052

Smith EL, Abbott AP, Ryder KS. Deep Eutectic Solvents (DESs) and Their Applications. Chem Rev. 2014;114(21):11060–82. DOI: https://doi.org/10.1021/cr300162p

García A, Rodríguez-Juan E, Rodríguez-Gutiérrez G, Rios JJ, Fernández-Bolaños J. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 2016;197:554–61. DOI: https://doi.org/10.1016/j.foodchem.2015.10.131

Zhou P, Wang X, Liu P, Huang J, Wang C, Pan M, et al. Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Ind Crops Prod. 2018;120:147–54. DOI: https://doi.org/10.1016/j.indcrop.2018.04.071

Rajha HN, Mhanna T, Kantar S el, Khoury A el, Louka N, Maroun RG. Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. LWT - Food Science and Technology [Internet]. 2019 [cited 2020 May 4];111:138–46. Available from: https://doi.org/10.1016/j.lwt.2019.05.004 DOI: https://doi.org/10.1016/j.lwt.2019.05.004

Zannou O, Pashazadeh H, Galanakis CM, Alamri AS, Koca I. Carboxylic acid-based deep eutectic solvents combined with innovative extraction techniques for greener extraction of phenolic compounds from sumac (Rhus coriaria L.). J Appl Res Med Aromat Plants. 2022 Sep;30:100380. DOI: https://doi.org/10.1016/j.jarmap.2022.100380

Alonso DA, Baeza A, Chinchilla R, Gómez C, Guillena G, Marset X, et al. Mezclas eutécticas como alternativa sostenible a los disolventes convencionales en Química Orgánica. Vol. 114, An. Quím. 2018.

da Silva DI, Nogueira GD, Duzzioni AG, Barrozo MA. Changes of antioxidant constituents in pineapple (Ananas comosus) residue during drying process. Ind Crops Prod. 2013;50:557–62. DOI: https://doi.org/10.1016/j.indcrop.2013.08.001

Sogi DS, Siddiq M, Greiby I, Dolan KD. Total phenolics, antioxidant activity, and functional properties of “Tommy Atkins” mango peel and kernel as affected by drying methods. Food Chem. 2013;141(3):2649–55. DOI: https://doi.org/10.1016/j.foodchem.2013.05.053

Dorta E, Lobo MG, González M. Using drying treatments to stabilise mango peel and seed: Effect on antioxidant activity. LWT - Food Science and Technology [Internet]. 2012;45(2):261–8. Available from: http://dx.doi.org/10.1016/j.lwt.2011.08.016 DOI: https://doi.org/10.1016/j.lwt.2011.08.016

Sukadeetad K, Nakbanpote W, Heinrich M, Nuengchamnong N. Effect of drying methods and solvent extraction on the phenolic compounds of Gynura pseudochina (L.) DC. leaf extracts and their anti-psoriatic property. Ind Crops Prod. 2018 Sep 15;120:34–46. DOI: https://doi.org/10.1016/j.indcrop.2018.04.020

Jiménez D, Vardanega R, Salinas F, Espinosa-Álvarez C, Bugueño-Muñoz W, Palma J, et al. Effect of drying methods on biorefinery process to obtain capsanthin and phenolic compounds from Capsicum annuum L. Journal of Supercritical Fluids. 2021 Aug 1;174. DOI: https://doi.org/10.1016/j.supflu.2021.105241

Puente L, Vega-Gálvez A, Ah-Hen KS, Rodríguez A, Pasten A, Poblete J, et al. Refractance Window drying of goldenberry (Physalis peruviana L.) pulp: A comparison of quality characteristics with respect to other drying techniques. LWT. 2020 Sep 1;131:109772. DOI: https://doi.org/10.1016/j.lwt.2020.109772

Rajoriya D, Shewale SR, Bhavya ML, Hebbar HU. Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innovative Food Science and Emerging Technologies. 2020 Dec 1;66:102530. DOI: https://doi.org/10.1016/j.ifset.2020.102530

Waghmare R. Refractance window drying: A cohort review on quality characteristics. Vol. 110, Trends in Food Science and Technology. Elsevier Ltd; 2021. p. 652–62. DOI: https://doi.org/10.1016/j.tifs.2021.02.030

Baeghbali V, Niakousari M, Farahnaky A. Refractance Window drying of pomegranate juice: Quality retention and energy efficiency. LWT - Food Science and Technology. 2016;66:34–40. DOI: https://doi.org/10.1016/j.lwt.2015.10.017

Mercado-Ruiz JN, Tortoledo-Ortiz O, García-Robles JM, Báez-Sañudo R, Garcia-Moreno BY, Avila-Prado J, et al. Calidad comercial de piña MD2 (Ananas comosus L.) Tratada en postcosecha con ácido 2-hidroxibenzoico. Revista Iberoamericana de tecnología postcosecha [Internet]. 2016 [cited 2022 May 30];20(2):141–54. Available from: https://www.redalyc.org/journal/813/81361553004/

Cvjetko Bubalo M, Ćurko N, Tomašević M, Kovačević Ganić K, Radojčić Redovniković I. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016 Jun;200:159–66. DOI: https://doi.org/10.1016/j.foodchem.2016.01.040

Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2007;2(4):875–7. DOI: https://doi.org/10.1038/nprot.2007.102

Ballesteros LF, Cerqueira MA, Teixeira JA, Mussatto SI. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydr Polym. 2015;127:347–54. DOI: https://doi.org/10.1016/j.carbpol.2015.03.047

Wojeicchowski JP, Marques C, Igarashi-Mafra L, Coutinho JAP, Mafra MR. Extraction of phenolic compounds from rosemary using choline chloride – based Deep Eutectic Solvents. Sep Purif Technol. 2021 Mar 1;258:117975. DOI: https://doi.org/10.1016/j.seppur.2020.117975

Castrica M, Rebucci R, Giromini C, Tretola M, Cattaneo D, Baldi A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital J Anim Sci [Internet]. 2019 Jan 2 [cited 2020 Apr 26];18(1):336–41. Available from: https://www.tandfonline.com/doi/full/10.1080/1828051X.2018.1529544 DOI: https://doi.org/10.1080/1828051X.2018.1529544

Martínez-Ramírez A, Contreras-Esquivel JC, Belares-Cerda R. Extracción de Polifenoles Asistida por Microondas a Partir de Punica granatum L. Revista Científica de la Universidad Autónoma de Coahuila. 2010;2(4):1–5.

Domínguez CR, Avila JAD, Pareek S, Ochoa MAV, Zavala JFA, Yahia E, et al. Content of bioactive compounds and their contribution to antioxidant capacity during ripening of pineapple (Ananas comosus L.) cv. Esmeralda. Journal of Applied Botany and Food Quality. 2018;91:61–8.

de Lima Marsiglia WIM, Oliveira L de SC, Lucas Jacinto Almeida R, Santos NC, da Silva Neto JM, Santiago ÂM, et al. Thermal stability of total phenolic compounds and antioxidant activities of jaboticaba peel: Effect of solvents and extraction methods. Journal of the Indian Chemical Society. 2023 May 1;100(5). DOI: https://doi.org/10.1016/j.jics.2023.100995

Sousa BA, Correia RTP. Phenolic content, antioxidant activity and antiamylolytic activity of extracts obtained from bioprocessed pineapple and guava wastes. Brazilian Journal of Chemical Engineering [Internet]. 2012;29(01):25–30. Available from: www.abeq.org.br/bjche DOI: https://doi.org/10.1590/S0104-66322012000100003

Londoño Londoño J. Antioxidantes: importancia biológica y métodos para medir su actividad PARTE III. In: Desarrollo y transversalidad: serie Lasallista Investigación y CiEncia [Internet]. 2012 [cited 2022 May 30]. p. 129–62. Available from: http://hdl.handle.net/10567/133

Received 2023-07-21
Accepted 2023-09-22
Published 2023-09-08