Main Article Content

Authors

In the upper basin of the Medellín River (Colombia) a hydrologic study was carried out to analyze the rainfall-runoff relationships in an event-scale, for the estimation of the maximum streamflow regime associated with different return periods in the basin and its tributary sub-basins, through hydrological modeling that considers the existence of climate change. This study is composed of the characterization of the basin of the study area, as well as the hydrological characterization, which includes the analysis of measured data with high temporal resolution of precipitation and the river levels. Different methods were considered to obtain the necessary information for the execution of a semi-distributed hydrological modeling activities, using the HEC-HMS. The model was calibrated by the simulation of 5 maximum streamflow events of the year 2021 and then it was run with different configurations of the antecedent moisture condition, rainfall-runoff models and stationary and non-stationary conditions (in rainfall), the latter to assess potential effects of the climate change. According to the results, the relative differences between the modeling cases with stationary and non-stationary conditions are, on average, negligible, with values between 3 and 5% in the considered cases, with the non-stationary cases having higher magnitudes of streamflow.

Juan José Guerrero Gallego, Universidad Nacional de Colombia, Medellín

Ingeniero Civil y Magister en Ingeniería de los Recursos Hidráulicos de la Universidad Nacional de Colombia, Facultad de Minas. Ingniero consultor en análisis de series de tiempo, bases de dartos, reanálisi de datos de GCMs y modelación hidrológica. 

Gabriel Rosado Cantillo, Universidad Nacional de Colombia - Sede Medellín

Ingniero Civil y Magister en Ingeniería de los Recursos Hidráulicos de la Univerasidad Naiconal de Colombia. Consultor independientes, Profesor de cátedra de Hidráulica y Acueductos y Alcantarillados, actualmente funcionario de Emporesas Públicas de Medellín. Área de trabajo: Diseño y modelaci´ón hidráulica, Modelación física. 

Luis Fernando Carvajal Serna, Universidad Nacional de Colombia - Sede Medellín

https://orcid.org/0000-0003-4149-1451

Lilian Posada García, Universidad Nacional de Colombia - Sede Medellín.

Ingeniera civil de la Facultad de MInas, Universidad Nacional de Colombia. MSc y PhD en Hidráulica y sedimentos de Colorado State University. Profesora asociadas de la Universidad Nacional de Colombia. Áreas de interés: Hidráulica Fluvial, Geomorfología fluvial, Modelación de estructuras hidráulicas,Trasnporte de sedimentos, Obras hidráulicas, Ingeniería de costas. Ha sido directora de innumerables estudios en el campo de la Hidráulica y sedimentos para diferentes entes privados y oficiales en Colombia, como: AMVA, Cornare, Corantioquia, Ministerio de Defensa, Empresas Públicas dee Medellín, entre otros.  

1.
Guerrero Gallego JJ, Rosado Cantillo G, Carvajal Serna LF, Posada García L. Peak flows hydrological analysis in the upper basin of the Medellín river (Colombia) with stationary and non-stationary conditions. inycomp [Internet]. 2024 May 14 [cited 2024 Dec. 21];26(2):e-20112931. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12931

Pachauri RK, Allen MR, Barros VR et al. Climate change 2014 synthesis report. contribution of working groups I, II, and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. 2014. Available at: https://research-repository.uwa.edu.au/en/publications/climate-change-2014-synthesis-report-contribution-of-working-grou

Salas JD, Obeysekera J. Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. Journal of Hydrologic Engineering [Internet]. 2014; 19(3): 554-568. Available at:https://doi.org/10.1061/(ASCE)HE.1943-5584.0 DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820

Arias PA, Ortega G, Villegas LD, Martínez JA. Colombian climatology in CMIP5/CMIP6 models: Persistent biases and improvements. Revista Facultad de Ingeniería Universidad de Antioquia [Internet]. 2021b; 100: 75-96. Available at: https://www.doi.org/10.17533/udea.redin.20210525 DOI: https://doi.org/10.17533/udea.redin.20210525

Cheng L, and AghaKouchak A. Nonstationary precipitation Intensity-Duration-Frequency Curves for infrastructure design in a changing climate. Scientific Reports [Internet]. 2014; 4(7093): 1-6. Available at. https://doi.org/10.1038/srep07093 DOI: https://doi.org/10.1038/srep07093

Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE. Climate Change 2007: Impacts, Adaptation and Vulnerability. UK. Cambridge University Press, Cambridge [Internet]. 2007. Available at: https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf

World Water Assessment Programme, WWAP. The United Nations World Water Development Report 3: Water in a Changing World. Paris: UNESCO, and London: Earthscan [Internet]. 2009. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000181993

Grajales D, Carvajal-Serna L F. Nonstationary intensity- frequency-duration curves for Medellin River basin. Revista DYNA [Internet]. 2019; 86 (208): 321-328. Available at: DOI:10.15446/dyna.v86n208.69300 DOI: https://doi.org/10.15446/dyna.v86n208.69300

Grajales D. Estimación de curvas intensidad-frecuencia-duración no estacionarias para el Departamento de Antioquia. Medellín. Tesis de maestría, Universidad Nacional de Colombia, Sede Medellín [Internet]. 2019. Available at: https://repositorio.unal.edu.co/handle/unal/78309

Poveda G. La Hidroclimatología De Colombia: Una Síntesis Desde La Escala Inter-Decadal Hasta La Escala Diurna. Revista de la Academia Colombiana [Internet]. 2004; 28(107): 201-222. http://dx.doi.org/10.18257/raccefyn.28(107).2004.1991 DOI: https://doi.org/10.18257/raccefyn.28(107).2004.1991

Rojo JD. Spatial and Temporal Characterization of Colombia´s Hydroclimatology Spatial and Temporal Characterization of Colombia’s Hydroclimatology. Medellin. PhD Thesis Dissertation, Universidad Nacional de Colombia, Sede Medellín [Internet]. 2018. Available at: https://repositorio.unal.edu.co/handle/unal/69017

U.S. Army Corps of Engineers, Hydrologic Engineering Center. HEC-HMS Hydrologic Modeling System, User’s Manual, Version 4.0, CPD-74A. Hydrologic Engineering Center. Davis, CA. 2013. Available at. https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.0.pdf

Mapa Digital de Suelos del Departamento de Antioquia, República de Colombia. Escala 1:100.000. Instituto Geográfico Agustín Codazzi, Bogotá. (2014). Available at: https://geoportal.igac.gov.co/contenido/datos-abiertos-agrologia

Rojo JD, Mesa OJ. MJO Influence over northern South American Observations and Modeling, AGU Fall Meeting, Washington DC, 10-14 Dec 2028. http://dx.doi.org/10.13140/RG.2.2.35057.10087

Microzonificación sísmica detallada de los municipios de Barbosa, Girardota, Copacabana, Sabaneta, La Estrella, Caldas y Envigado. AMVA-UNA, Medellín. 2006. Available at: http://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/19862

Estudios y Diseño de Estabilidad de la Vía Regional Nororiental (Fases 1, 2 y 4) Asociada a la dinámica del Río Medellín y Estudios Básicos de Amenaza de Inundación Asociada al Río Medellín entre la Descarga de la Quebrada La Rodas y El Puente de La Troncal Nordeste en Barbosa. AMVA-UNAL, Medellín, 2018.

Smith R, Vélez MV. Hidrología de Antioquia. 1era. Ed. Secretaría de Obras Públicas, Antioquia-Posgrado en Aprovechamiento de Recursos Hidráulicos; Medellín. 1997.

Plan de Ordenación y Manejo de la Cuenca Hidrográfica del río Aburrá. AMVA-CORNARE-CORANTIOQUIA, Medellín. 2018. Available at: https://cia.corantioquia.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=16645

Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia Escala 1:100.000. Instituto de Hidrología, Meteorología y Estudios Ambientales. Bogotá, D. C., 2010. Available at: https://www.purace-cauca.gov.co/MiMunicipio/DocumentosGestinRiesgoYDesastres/Estudios%20gesti%C3%B3n%20del%20riesgo%20Purac%C3%A9/Leyenda%20nacional%20coberturas%20tierra.pdf

O’Donnell, T. A Direct Three-Parameter Muskingum Procedure Incorporating Lateral Inflow. Hydrological Sciences Journal [Internet]. 1985, 30:4: 479-496. Available at: https://doi.org/10.1080/02626668509491013 DOI: https://doi.org/10.1080/02626668509491013

Bell, FC. The Areal Reduction Factor in Rainfall Frequency Estimation. United Kindom: Institute of Hydrology, No. 35, Wallingford, England, 1976. Available at: https://nora.nerc.ac.uk/id/eprint/5751/1/IH_035.pdf

Chow V, Maidment D, Mays L. Hidrología Aplicada. 1era. ed. Mc Graw Hill; 1994.

UNAL – Universidad Nacional de Colombia. https://medellin.unal.edu.co/noticias/3989-se-debe-respetar-red-de-drenaje-natural-del-rio-medellin-para-evitar-nuevas-emergencias.html

Chica P, Carvajal-Serna LF., Ochoa A. Comparison of stationary and non-stationary estimation of return period for sewer design in Antioquia (Colombia), Anais da Academia Brasileira de Ciencias [Internet]. 2022, 94 (suppl 4):1-14. Available at: https://doi.org/10.1590/0001-3765202220200810 DOI: https://doi.org/10.1590/0001-3765202220200810

Received 2023-04-26
Accepted 2024-03-22
Published 2024-05-14