Main Article Content

Authors

The upward development of nanotechnology in the last 30 years for applications in medicine, agriculture, and energy, among others, has substantially impacted the development of scientific articles and patents. This has stimulated the knowledge economy by improving university-industry integration, which benefits all. The increasing development of patents leads us to analyze, within a period of 10 years, the emerging technologies in developing metallic and bimetallic nanoparticles. Additionally, the incidence that the production of patents has had on developing this technology in leading countries such as the United States, China, Australia, and India is shown. This article shows a scientometric analysis of the development of patents the metallic and bimetallic nanoparticles. Aspects such as patents by country, types of patents, inventors, applicants, and most developed technologies were evaluated. Scopus databases, Espacenet software, and different computer tools were used for the analysis.  The results showed the United States and China with 53.3% of patent production with respect to the total; the United States mainly develops patents, and the principal applicants are Universities (63%) and industry (37%).

Grey Castellar Ortega, Universidad Autónoma de Caribe, Barranquilla, Colombia

https://orcid.org/0000-0001-7711-5912

 

Javier Jaramillo Colpas, Universidad de la Costa, Barranquilla, Colombia

 

 

https://orcid.org/0000-0002-5921-1529

Iván Alberto Romero Mejía, Universidad Antonio Nariño, Puerto Colombia, Colombia

https://orcid.org/0000-0001-5474-3166

1.
Cely-Bautista MM, Castellar Ortega G, Jaramillo Colpas J, Romero Mejía IA. Trends in the Development of Metallic and Bimetallic Nanoparticles: A Patents Landscape Analysis . inycomp [Internet]. 2023 Jun. 26 [cited 2024 Dec. 22];25(3):e-20612798. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12798

Bleeker RA, Troilo LM, Ciminello DP. Patenting Nanotechnology. Materials Today. 2004;(February):44-8.

https://doi.org/10.1016/S1369-7021(04)00083-5 DOI: https://doi.org/10.1016/S1369-7021(04)00083-5

Foladori G. Políticas públicas en nanotecnología en América Latina. Revista Problemas del Desarrollo. 2016;186(47):59-81.

https://doi.org/10.1016/j.rpd.2016.03.002 DOI: https://doi.org/10.1016/j.rpd.2016.03.002

Younis SA, Kim KH, Shaheen SM, Antoniadis V, Tsang YF, Rinklebe J, et al. Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renewable and Sustainable Energy Reviews. 2021;152(September).

https://doi.org/10.1016/j.rser.2021.111686 DOI: https://doi.org/10.1016/j.rser.2021.111686

Pandey G. Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environ Technol Innov. 2018;11:299-307.

https://doi.org/10.1016/j.eti.2018.06.012 DOI: https://doi.org/10.1016/j.eti.2018.06.012

Foladori G, Bejarano F. Nanotecnología: Gestión y Reglamentación de riesgos para la salud y medio ambiente en América Latina y el Caribe. TrabEducSaúde. 2013;11(1):145-67. https://doi.org/10.1590/S1981-77462013000100009 DOI: https://doi.org/10.1590/S1981-77462013000100009

Acharya A, Pal PK. Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. NanoImpact. 2020;19(March). https://doi.org/10.1016/j.impact.2020.100232 DOI: https://doi.org/10.1016/j.impact.2020.100232

Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman H ur, et al. Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment. 2020;721. https://doi.org/10.1016/j.scitotenv.2020.137778 DOI: https://doi.org/10.1016/j.scitotenv.2020.137778

Joseph X, Akhil V, Arathi A, Mohanan P V. Nanobiomaterials in support of drug delivery related issues. Materials Science & Engineering B. 2022;279(March 2021). https://doi.org/10.1016/j.mseb.2022.115680 DOI: https://doi.org/10.1016/j.mseb.2022.115680

Pullela PK, Korrapati S, Sharan Teja Reddy K, Uthirapathy V. Concentration of gold nanoparticles at near Zero-cost. Mater Today Proc. 2022;54:255-8. https://doi.org/10.1016/j.matpr.2021.08.306 DOI: https://doi.org/10.1016/j.matpr.2021.08.306

Ullah M, Wahab A, Khan D, Saeed S, Khan SU, Ullah N, et al. Modified gold and polymeric gold nanostructures: Toxicology and biomedical applications. Colloids and Interface Science Communications. 2021;42(April). https://doi.org/10.1016/j.colcom.2021.100412 DOI: https://doi.org/10.1016/j.colcom.2021.100412

Mirsasaani SS, Hemati M, Tavasoli T, Dehkord ES, Yazdi GT, Poshtiri DA. Nanobiomaterials in clinical Dentistry. In: Nanotechnology and Nanobiomaterials in Dentistry. 2013. p. 17-33. https://doi.org/10.1016/B978-1-4557-3127-5.00002-7 DOI: https://doi.org/10.1016/B978-1-4557-3127-5.00002-7

Azzawi M, Seifalian A, Ahmed W. Nanotechnology for the diagnosis and treatment of diseases. Nanomedicine. 2016;11(16):2025-7.

https://doi.org/10.2217/nnm-2016-8000 DOI: https://doi.org/10.2217/nnm-2016-8000

Khan S, Naushad M, Al-Gheethi A, Iqbal J. Engineered nanoparticles for removal of pollutants from wastewater: Current status and future prospects of nanotechnology for remediation strategies. J Environ Chem Eng. 2021;9(5). https://doi.org/10.1016/j.jece.2021.106160 DOI: https://doi.org/10.1016/j.jece.2021.106160

Siddiqui SI, Chaudhry SA. Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process Safety and Environmental Protection. 2017;111:592-626. https://doi.org/10.1016/j.psep.2017.08.009 DOI: https://doi.org/10.1016/j.psep.2017.08.009

Zhao L, Deng J, Sun P, Liu J, Ji Y, Nakada N, et al. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Science of the Total Environment. 2018;627:1253-63.

https://doi.org/10.1016/j.scitotenv.2018.02.006 DOI: https://doi.org/10.1016/j.scitotenv.2018.02.006

De Marchi L, Coppola F, Soares AMVM, Pretti C, Monserrat JM, Torre C della, et al. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment. Environ Res. 2019;178(August). https://doi.org/10.1016/j.envres.2019.108683 DOI: https://doi.org/10.1016/j.envres.2019.108683

Wei Y, Zhu J, Gan Y, Cheng G. Titanium glycolate-derived TiO2 nanomaterials: Synthesis and applications. Advanced Powder Technology. 2018;29(10):2289-311. https://doi.org/10.1016/j.apt.2018.05.016 DOI: https://doi.org/10.1016/j.apt.2018.05.016

Abdullah M, Kamarudin SK. Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview. Renewable and Sustainable Energy Reviews. 2017;76(February 2016):212-25. https://doi.org/10.1016/j.rser.2017.01.057 DOI: https://doi.org/10.1016/j.rser.2017.01.057

Zhang X, Cheng X, Zhang Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review. Journal of Energy Chemistry. 2016;25(6):967-84. https://doi.org/10.1016/j.jechem.2016.11.003 DOI: https://doi.org/10.1016/j.jechem.2016.11.003

Shen S, Chen J, Wang M, Sheng X, Chen X, Feng X, et al. Titanium dioxide nanostructures for photoelectrochemical applications. Prog Mater Sci. 2018;98(October 2017):299-385. https://doi.org/10.1016/j.pmatsci.2018.07.006 DOI: https://doi.org/10.1016/j.pmatsci.2018.07.006

Vanegas-Chamorro M, Cely-Bautista MM, Villicaña-Ortiz E, Mendoza-Cáceres D, Visbal-Vanegas V. Current Status of Solar-Thermal and Solar-Photovoltaic Technology Development at the International Level. International Journal of Energy Economics and Policy. 2022;12(6):112-22. https://doi.org/10.32479/ijeep.13699 DOI: https://doi.org/10.32479/ijeep.13699

Wipo. World Intellectual Property Indicators 2010. Vol. 1, World Intellectual Property Organization. Geneva,Switzerland; 2021.

Wang G, Guan J. The role of patenting activity for scientific research: A study of academic inventors from China's nanotechnology. J Informetr. 2010;4(3):338-50. https://doi.org/10.1016/j.joi.2010.02.002 DOI: https://doi.org/10.1016/j.joi.2010.02.002

Jain A, Hallihosur S, Rangan L. Dynamics of nanotechnology patenting: An Indian scenario. Technol Soc. 2011;33(1-2):137-44.

https://doi.org/10.1016/j.techsoc.2011.03.008 DOI: https://doi.org/10.1016/j.techsoc.2011.03.008

Wen Y. China Economic Review China ' s industrial revolution : A new perspective. 2021;69(December 2020).

https://doi.org/10.1016/j.chieco.2021.101671

Dong H, Gao Y, Sinko PJ, Wu Z, Xu J, Jia L. The nanotechnology race between China and the United States. Nano Today. 2016;11(1):7-12. https://doi.org/10.1016/j.nantod.2016.02.001 DOI: https://doi.org/10.1016/j.nantod.2016.02.001

Cely-Bautista M, Castellar-Ortega G, Jaramillo-Colpas J. View of Emerging Technologies in the Development of Metallic and Bimetallic Nanoparticles in the Last Decade_ A Scientometric Analysis. Journal of engineering and Technological sciences. 2023;55(2):177-88.

https://doi.org/10.5614/j.eng.technol.sci.2023.55.2.7 DOI: https://doi.org/10.5614/j.eng.technol.sci.2023.55.2.7

Wen Y. China Economic Review China ' s industrial revolution : A new perspective. 2021;69(December 2020).

https://doi.org/10.1016/j.chieco.2021.101671 DOI: https://doi.org/10.1016/j.chieco.2021.101671

Wu H, Lin J, Wu HM. Investigating the real effect of China's patent surge: New evidence from firm-level patent quality data. J Econ Behav Organ. 2022;204:422-42. https://doi.org/10.1016/j.jebo.2022.10.004 DOI: https://doi.org/10.1016/j.jebo.2022.10.004

Maxwell IA, Maxwell NJL. A review of Chinese-owned Australian patents. World Patent Information. 2022;71(December 2021):8-13.

https://doi.org/10.1016/j.wpi.2022.102151 DOI: https://doi.org/10.1016/j.wpi.2022.102151

Received 2023-02-10
Accepted 2023-07-17
Published 2023-06-26