Main Article Content

Authors

The use of reinforced concrete walls has become popular in Latin America as a structural system for the construction of residential buildings. However, this system is characterized by a low ductility capacity, compromising its seismic performance during the last strong earthquakes. This study uses three real buildings composed of reinforced concrete walls located in a high seismic region and soil type D, designed based on the Colombian building code. Nonlinear models of these three buildings were generated to evaluate the seismic response under actual ground motions. The three buildings were then redesigned using seismic isolation and the same analysis procedure was carried out to obtain the seismic response of the isolated buildings, comparing the results with those of the fixed base. The results show that the seismically isolated buildings exhibited a higher seismic performance, moving from a life safety performance level of the fixed-base buildings to an immediate occupancy performance level. In addition, the isolated buildings required up to 50% less reinforced steel and up to 100% fewer boundary elements compared to the fixed-base buildings, while keeping the architectural and building advantages of the wall structural system.

1.
Nino-Castano JA, Chalarca B, Bedoya-Ruiz D. Influence of seismic isolation on the seismic design of buildings with reinforced concrete wall structure. inycomp [Internet]. 2024 Feb. 26 [cited 2024 Dec. 21];26(1):e-20212779. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12779

Hirosawa, M. Past experimental results on reinforced concrete shear walls and analysis on them. Kenchiku Shiryo, No. 6, Building Research Institute, Ministry of Construction; 1975.

Barda, F., Hanson, J. M., & Corley, W. G. Shear strength of low-rise walls with boundary elements; 1976. 20 pp.

American Concrete Institute. Building Code Requirements for Structural Concrete (ACI 318-19).2019. ISBN: 978-1-64195-056-5. DOI: 10.14359/51716937 DOI: https://doi.org/10.14359/51716937

Moehle, J. (2014). Seismic Design of Reinforced Concrete Buildings. In A Historian Looks Back. McGraw-Hill Education; 2014. Disponible en: https://doi.org/10.5948/upo9781614445067.021 DOI: https://doi.org/10.5948/UPO9781614445067.021

Segura, C., & Wallace, J. W. Seismic Performance Limitation of Slender Reinforced Concrete Structural Walls. University of California; 2018. Disponible en https://escholarship.org/uc/item/9b96p1qq DOI: https://doi.org/10.14359/51701918

Abdullah, S. A., & Wallace, J. W. Drift capacity of reinforced concrete structural walls with special boundary elements. ACI Structural Journal. 2019; 116(1), 183–194. Disponible en https://doi.org/10.14359/51710864 DOI: https://doi.org/10.14359/51710864

Welt, T. S., Massone, L. M., Lafave, J. M., Lehman, D. E., McCabe, S. L., & Polanco, P. (2017). Confinement Behavior of Rectangular Reinforced Concrete Prisms Simulating Wall Boundary Elements. Journal of Structural Engineering (United States). 2017; 143(4), 1–12. Disponible en https://doi.org/10.1061/(ASCE)ST.1943-541X.0001682 DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001682

Arroyo, Orlando, Feliciano, Dirsa, Carrillo, Julián, Hube, Matías A. Seismic performance of mid-rise thin concrete wall buildings lightly reinforced with deformed bars or welded wire mesh. Engineering Structures. 2021; 1-12. Disponible en https://doi.org/10.1016/j.engstruct.2021.112455 DOI: https://doi.org/10.1016/j.engstruct.2021.112455

Segura, C.L., Arteta, C.A., Araujo, G., and Wallace, J.W. Flexural compression capacity of thin reinforced concrete structural walls. Proceedings of the 11th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Los Angeles, CA.; 2018. Disponible en: https://www.researchgate.net/publication/326131426_FLEXURAL_COMPRESSION_CAPACITY_OF_THIN_REINFORCED_CONCRETE_STRUCTURAL_WALLS

Aaleti, S., Brueggen, B. L., Johnson, B., French, C. E., & Sritharan, S. Cyclic response of reinforced concrete walls with different anchorage details: Experimental investigation. Journal of Structural Engineering (United States). 2013 139(7), 1181–1191. Disponible en: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000732 DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000732

Hardisty, J. N., Villalobos, E., Richter, B. P., & Pujol, S. Lap Splices in Unconfined Boundary Elements Tests indicate that a currently allowed detail provides insufficient toughness. January 2015; 51–58.

Lu, Y., Henry, R. S., Gultom, R., & Ma, Q. T. Cyclic Testing of Reinforced Concrete Walls with Distributed Minimum Vertical Reinforcement. 2013; 1–17. Disponible en: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001723. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001723

Sritharan, S., Beyer, K., Henry, R. S., Chai, Y. H., Kowalsky, M., & Bull, D. Understanding poor seismic performance of concrete walls and design implications. Earthquake Spectra. 2014; 30(1), 307–334. Disponible en: https://doi.org/10.1193/021713EQS036M DOI: https://doi.org/10.1193/021713EQS036M

Lindley, P. B. Engineering Design with Natural Rubber. 1970.

Megget, L. M. Analysis and Design of a Base-Isolated Reinforced Concrete Frame Building.pdf. The New Zealand National Society for Earthquake Engineering, Vol. 11, No. 4, December 1978; 245–254. Disponible en: https://doi.org/10.5459/bnzsee.11.4.245-254 DOI: https://doi.org/10.5459/bnzsee.11.4.245-254

Kelly, J. M., Skinner, R. I., Heine, A. J. Mechanisms of Energy Absorption in Special Devices for Use in Earth-quake Resistant Structures. Bulletin of N.Z. Society for Earthquake Engineering, Vol. 5 No. 3, September 1972; 63–88. Disponible en: https://doi.org/10.5459/bnzsee.5.3.63-88 DOI: https://doi.org/10.5459/bnzsee.5.3.63-88

Naeim, F., & Kelly, J. M. Design of Seismic Isolated Structures: From Theory to Practice. Earthquake Spectra. 1999; 16(3), 709–710. Disponible en: https://doi.org/10.1193/1.1586135 DOI: https://doi.org/10.1193/1.1586135

L.P., C., Davidson, B. J., & Buckle, I. G. Retrofit of the William Clayton building using additional damping. NZSEE 2001 Conference.

Colunga, A. T. Diseño Sísmico Simplificado de Estructuras con Muros de Mampostería Aisladas Sísmicamente. Revista Internacional de Ingeniería de Estructuras Vol. 22(1), 2017. DOI:10.24133/riie.v22i1.627. Disponible en https://www.researchgate.net/publication/337655043_Metodo_simplificado_para_el_diseno_de_estructuras_con_base_en_muros_de_carga_aisladas_sismicamente

Piscal, C. Tesis dotoral. New Design Considerations for Seismic Isolated Buildings in Colombia. Universitat Politècnica de Catalunya. Departament d’Enginyeria Civil i Ambiental 2018. Disponible en: http://hdl.handle.net/10803/663457

Melkumyan, M. 25 Years of Creation, Development and Implementation of Seismic Isolation in Armenia. In International Journal of Trend in Scientific Research and Development. 2019; 3, 3). South Asia Management Association.. Disponible en: https://doi.org/10.31142/ijtsrd22983 DOI: https://doi.org/10.31142/ijtsrd22983

Niño Castaño J. Nuevo enfoque de diseño sísmico para edificaciones en muros de concreto reforzado utilizando aislamiento en base. Manizales: Universidad Nacional de Colombia; 2023.

Asociación Colombiana de Ingeniería Sísmica. Reglamento Colombiano de Construcción Sismo Resistente NSR-10. 2010.

MIDAS Gen. New York: MIDASoft Inc; 2023.

JSCE Guidelines for Concrete No. 15. Standard Specifications for Concrete Structures. 2007.

Park, R. and Paulay, T. Reinforced Concrete Structures. John Wiley and Sons, Inc. Canada, July 1975. Disponible en: http://www3.interscience.wiley.com/

Yun, X., & Gardner, L. Stress-strain curves for hot-rolled steels. Journal of Constructional Steel Research. 2017; 133, 36–46. Disponible en: https://doi.org/10.1016/j.jcsr.2017.01.024 DOI: https://doi.org/10.1016/j.jcsr.2017.01.024

Federal Emergency Management Agency.Quantification of Building Seismic Performance Factors, FEMA P695, Washington, D.C.; 2009.

American Society of Civil Engineers ASCE. ASCE 7-16 Minimum Design Loads for Buildings and Other Structures. 2017.

Structural Engineers Association of California, Sacramento, Estados Unidos. SEAOC. Performance-based seismic engineering of buildings, Vision 2000 Report. 1995.

Miranda, E., Taghavi, S. Estimation of seismic demands on acceleration-sensitive non-structural components in critical facilities. Memorias del seminario ATC-29-2 Seismic Design, Estados Unidos. 2003. Disponible en: https://www.academia.edu/31490458/Estimation_of_Seismic_Acceleration_Demands_in_Building_Components

Received 2023-02-06
Accepted 2024-01-17
Published 2024-02-26