Main Article Content

Authors

In a pilot-scale experiment carried out in Brazil, genetically improved farmed tilapia juveniles were reared in septic tank-high rate algal pond (HRAP) effluent. The combination of three total ammonia nitrogen (TAN) surface loading rates (0.6; 1.2 and 2.4 kg TAN.ha-1.d-1) and three fish stocking densities (3; 6 and 12 fish.m-2) was evaluated during a 22-week research. The fish rearing tanks worked as wastewater treatment polishing units, adding (as the best results, achieved with the lowest fish stocking density and 1.2 kg TAN.ha-1.d-1) the following removal figures on top of those achieved at the HRAP: 78.3% total Kjeldahl nitrogen; 89.1% ammonia nitrogen; 63.9% total phosphorous; 57.2% chemical oxygen demand; 2.36 log units E. coli. Fish productivity was estimated at 2.67 ton.ha-1 for fish culture over six month per year in a temperate climate region, using the domestic treated wastewater natural plankton population as the only food source.

Iván A. Sánchez-Ortiz, Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto, Colombia

https://orcid.org/0000-0001-7579-5969

Rafael Bastos, Departamento de Engenharia Civil, Universidade Federal de Viçosa, Viçosa-Minas Gerais Brazil

https://orcid.org/0000-0001-6781-9617

Eduardo A. Lanna, Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa-Minas Gerais, Brazil

https://orcid.org/0009-0002-0730-7999

Adriana B. Sales-Magalhães, Centro Universitário de Caratinga (UNEC). Caratinga-Minas Gerais, Brazil

https://orcid.org/0000-0003-3473-4996

1.
Sánchez-Ortiz IA, Bastos R, Lanna EA, Sales-Magalhães AB. Tilapia rearing with septic tank-high rate algal pond effluent: domestic wastewater polishing treatment and resource recovery. inycomp [Internet]. 2024 Feb. 26 [cited 2024 Dec. 21];26(1):e-21212731. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12731

Adhikari JR, Lohani SP. Design, installation, operation and experimentation of septic tank - UASB wastewater treatment system. Renew. Energ. 2019;143:1406–1415. Available from: https://doi.org/10.1016/j.renene.2019.04.059 DOI: https://doi.org/10.1016/j.renene.2019.04.059

Tan X-B, Wang L, Wan X-P, Zhou X-N, Yang L-B, Zhang W-W, Zhao X-C. Growth of Chlorella pyrenoidosa on different septic tank effluents from rural areas for lipids production and pollutants removal. Bioresource Technol. 2021;339:125502. Available from: https://doi.org/10.1016/j.biortech.2021.125502 DOI: https://doi.org/10.1016/j.biortech.2021.125502

Buchanan NA, Young P, Cromar NJ, Fallowfield HJ. Performance of a high rate algal pond treating septic tank effluent from a community wastewater management scheme in rural South Australia. Algal Res. 2018;35:325–332. Available from: https://doi.org/10.1016/j.algal.2018.08.036 DOI: https://doi.org/10.1016/j.algal.2018.08.036

Craggs R, Sutherland D, Campbell H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol. 2012;24:329-337. Available from: https://doi.org/10.1007/s10811-012-9810-8 DOI: https://doi.org/10.1007/s10811-012-9810-8

Kumar D, Hiremath AM, Asolekar SR. Integrated management of wastewater through sewage fed aquaculture for resource recovery and reuse of treated effluent: A case study. APCBEE Procedia. 2014;10:74–78. Available from: https://doi.org/10.1016/j.apcbee.2014.10.019 DOI: https://doi.org/10.1016/j.apcbee.2014.10.019

Kumar D, Chaturvedi MKK, Sharma SK, Asolekar SR. Sewage-fed aquaculture: a sustainable approach for wastewater treatment and reuse. Environ. Monitor. Assess. 2015;187:656. Available from: https://doi.org/10.1007/s10661-015-4883-x DOI: https://doi.org/10.1007/s10661-015-4883-x

Waite R, Beveridge M, Brummett R, Castine S, Chaiyawannakarn N, Kaushik S, Mungkung R, Nawapakpilai S, Phillips M [Internet]: World Resources Institute: 2014. Improving productivity and environmental performance of aquaculture. Creating a Sustainable Food Future, (June), 2014. Available from: https://files.wri.org/d8/s3fs-public/WRI14_WorkingPaper_WRR5_final.pdf

Gabriel NN. Review on the progress in the role of herbal extracts in tilapia culture, Cogent Food Agric. 2019;5:1619651. Available from: https://doi.org/10.1080/23311932.2019.1619651 DOI: https://doi.org/10.1080/23311932.2019.1619651

Sánchez IA, Bastos RKX, Lanna EAT. Tilapia rearing with high rate algal pond effluent: ammonia surface loading rates and stocking densities effects. Wa. Sci. Technol. 2018;78(1):49-56. Available from: https://doi.org/10.2166/wst.2018.285 DOI: https://doi.org/10.2166/wst.2018.285

Bastos RKX, Pereira CM, Pivelli RP, Lapolli FR, Lanna EAT. Utilização de esgotos sanitários em piscicultura, In: Bastos RKX, coordinador. Utilização de esgotos tratados em fertirrigação, hidroponia e piscicultura – Projeto PROSAB. Rio de Janeiro-Brazil: ABES, RiMa; 2003. p. 193-221.

Edwards P, Sinchumpasak OA, Tabucanon M. The harvest of microalgae from the effluent of a sewage fed high rate stabilization pond by tilapia nilotica Part 2: Studies of the fish ponds. Aquaculture. 1981;23(1-4):107-147. Available from: https://doi.org/10.1016/0044-8486(81)90010-7 DOI: https://doi.org/10.1016/0044-8486(81)90010-7

APHA, AWWA, WEF. Standard methods for the examination of water and wastewater, 22th ed. Washington DC, USA:American Public Health Association/American Water Works Association/Water Environment Federation. 2012.

Young P, Taylor M, Fallowfield HJ. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment. World J. Microb. Biot. 2017;33(6):117. Available from: https://doi.org/10.1007/s11274-017-2282-x DOI: https://doi.org/10.1007/s11274-017-2282-x

Assemany PP, Calijuri ML, Couto EA, Batalha MH, Silva NC, Santiago AF, Castro JS. Algae/bacteria consortium in high rate ponds: Influence of solar radiation on the phytoplankton community. Ecol. Eng. 2015;77:154–162. Available form: https://doi.org/10.1016/j.ecoleng.2015.01.026 DOI: https://doi.org/10.1016/j.ecoleng.2015.01.026

Reed SC, Bastian RK, Jeweil W. Engineering assessment of aquaculture systems for wastewater treatment: an overview. In: Bastian RK, Reed SC, Project Officers. Aquaculture systems for wastewater treatment: Seminar proceedings and engineering assessment. Washington DC, USA: Environmental Protection Agency EPA; 1979. p. 1-12.

Meadows BS: Fish production in waste stabilization ponds. In: Cotton A, Pickford J, editors. Proceedings of the 9th WEDC International Conference Sanitation and water for development in Africa. Harare, Zimbabwe; 1983. p. 39-42.

Balasubramanian S, Pappathi R, Raj SP. An energy budget and efficiency of sewage-fed fish ponds. Bioresource Technol. 1995;52(2):145-150. Available from: https://doi.org/10.1016/0960-8524(95)00015-7 DOI: https://doi.org/10.1016/0960-8524(95)00015-7

Freitas AS. Utilização de esgotos sanitários tratados em lagoas de polimento para a criação de alevinos de tilápia do Nilo-aspectos produtivos e econômicos. [dissertação de mestrado]. Viçosa, Brazil: Universidade Federal de Viçosa; 2006.

Sin AW, Chiu MLT. The culture of tilapia (Sarotherodon mossambica) in secondary effluents of a pilot sewage treatment plant. Resour. Conserv. 1987;13(2-4):217-229. Available from: https://doi.org/10.1016/0166-3097(87)90064-2 DOI: https://doi.org/10.1016/0166-3097(87)90064-2

Silva FJA, Mara DD, Pearson HW, Mota SE. Informal fish culture in the Maracanaú waste stabilization ponds in Fortaleza, Brazil. Water Sci. Technol. 2000;42(10-11):393–398. Available from: https://doi.org/10.2166/wst.2000.0687 DOI: https://doi.org/10.2166/wst.2000.0687

Abdul-Rahaman I, Owusu-Frimpong M, Ofori-Danson PK. Sewage fish culture as an alternative to address the conflict between hunters and hunting communities in Northern Region. Journal of Agriculture and Sustainability. 2012;1(1):1-22.

Received 2023-01-18
Accepted 2024-01-17
Published 2024-02-26