A review of the use of Sentinel-2 imagery for global forest cover monitoring
Main Article Content
The objective of this work was to carry out a systematic review of the use of Sentinel-2 images for monitoring forest cover at a global level, for which the protocol proposed by Prisma 2009 was used. The search for scientific articles published between 2015 and 2021 was carried out in the databases: Scopus and Science Direct, analyzing a total of 65 articles that detail the different types of classifiers used to process the S-2 images, the thematic accuracy achieved in the cartography, as well as the increase, maintenance or decline of forests and its main causes worldwide. As results, it was found that Random Forest (RF) is the most used classifier for the digital processing of S-2 images, which in most cases achieves a thematic accuracy greater than 85%. In multi-temporal work, it has been found that forest cover in South America and Africa has been decreased by activities such as agriculture and livestock. While, in some Asian countries, forest cover has increased as a result of the implementation of reforestation and community forest management programs. Therefore, the results suggest that Sentinel-2 images have enormous potential to carry out continuous and systematic monitoring of forest loss or gain across the planet.
(1). Sims, N. C., England, J. R., Newnham, G. J., Alexander, S., Green, C., Minelli, S., et al. (2019). Developing good practice guidance for estimating land degradation in the context of the United Nations Sustainable Development Goals. Environmental Science & Policy, 92, 349–355. https://doi.org/10.1016/j.envsci.2018.10.014 DOI: https://doi.org/10.1016/j.envsci.2018.10.014
(2). Mullan, K. (2014). The value of forest ecosystem services to developing economies. Center for Global DOI: https://doi.org/10.2139/ssrn.2622748
(3). FAO & PNUMA (2020). El estado de los bosques del mundo 2020. Los bosques, la biodiversidad y las personas. Roma: FAO.
(4). Aschbacher, J. (2017). ESA’s earth observation strategy and Copernicus. In: Onoda, M. & Young, O. (eds), Satellite earth observations and their impact on society and policy (pp. 81-86). Singapore: Springer. https://doi.org/10.1007/978-981-10-3713-9_5 DOI: https://doi.org/10.1007/978-981-10-3713-9_5
(5). Hościło, A., & Lewandowska, A. (2019). Mapping forest type and tree species on a regional scale using multi-temporal Sentinel-2 data. Remote Sensing, 11(8), 929. https://doi.org/10.3390/rs11080929 DOI: https://doi.org/10.3390/rs11080929
(6). ESA (European Space Agency) 2021. Sentinel-2. Disponible en: https://sentinel.esa.int/web/sentinel/missions/sentinel-2
(7). Harris, J. D., Quatman, C. E., Manring, M. M., Siston, R. A., & Flanigan, D. C. (2013). How to write a systematic review. The American journal of sports medicine, 42(11), 2761-2768. 10.1177/0363546513497567 DOI: https://doi.org/10.1177/0363546513497567
(8). Brovelli, M., Sun, Y., & Yordanov, V. (2020). Monitoring forest change in the amazon using multi-temporal remote sensing data and machine learning classification on Google Earth Engine. ISPRS International Journal of Geo-Information, 9(10), 580. https://doi.org/10.3390/ijgi9100580 DOI: https://doi.org/10.3390/ijgi9100580
(9). Nazarova, T., Martin, P., & Giuliani, G. (2020). Monitoring vegetation change in the presence of high cloud cover with Sentinel-2 in a lowland tropical forest region in Brazil. Remote Sensing, 12(11), 1829. https://doi.org/10.3390/rs12111829 DOI: https://doi.org/10.3390/rs12111829
(10). Glinskis, E., & Gutiérrez-Vélez, V. (2019). Quantifying and understanding land cover changes by large and small oil palm expansion regimes in the Peruvian Amazon. Land Use Policy, 80, 95-106. https://doi.org/10.1016/j.landusepol.2018.09.032 DOI: https://doi.org/10.1016/j.landusepol.2018.09.032
(11). Clark, M. (2020). Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 26-40. https://doi.org/10.1016/j.isprsjprs.2019.11.007 DOI: https://doi.org/10.1016/j.isprsjprs.2019.11.007
(12). Nink, S., Hill, J., Stoffels, J., Buddenbaum, H., Frantz, D., & Langshausen, J. (2019). Using landsat and Sentinel-2 data for the generation of continuously updated forest type information layers in a cross-border region. Remote Sensing, 11(20), 2337. https://doi.org/10.3390/rs11202337 DOI: https://doi.org/10.3390/rs11202337
(13). Bolyn, C., Michez, A., Gaucher, P., Lejeune, P., & Bonnet S. (2018). Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery. Biotechnologie, Agronomie, Société et Environnement, 22(3), 16. 10.25518/1780-4507.16524 DOI: https://doi.org/10.25518/1780-4507.16524
(14). Zhang, W., Brandt, M., Wang, Q., Prishchepov, A. V., Tucker, C. J., Li, Y., et al. (2019). From woody cover to woody canopies: How Sentinel-1 and Sentinel-2 data advance the mapping of woody plants in savannas. Remote Sensing of Environment, 234, 111465. doi:10.1016/j.rse.2019.111465 DOI: https://doi.org/10.1016/j.rse.2019.111465
(15). Meli Fokeng, R., Gadinga Forje, W., Meli Meli, V., & Nyuyki Bodzemo, B. (2019). Multi-temporal forest cover change detection in the Metchie-Ngoum Protection Forest Reserve, West Region of Cameroon. The Egyptian Journal of Remote Sensing and Space Science. doi:10.1016/j.ejrs.2018.12.002 DOI: https://doi.org/10.1016/j.ejrs.2018.12.002
(16). Le, H. T., Tran, T. V., Gyeltshen, S., Nguyen, C. P. T., Tran, D. X., Luu, T. H., et al. (2020). Characterizing Spatiotemporal Patterns of Mangrove Forests in Can Gio Biosphere Reserve Using Sentinel-2 Imagery. Applied Sciences, 10(12), 4058. doi:10.3390/app10124058 DOI: https://doi.org/10.3390/app10124058
(17). Nguyen, L., Nguyen, C., Le, H., Tran, B. (2019). Mangrove mapping and above-ground biomass change detection using satellite images in coastal areas of Thai Binh province, Vietnam. Forest and Society, 3(2), 248-261. https://doi.org/10.24259/fs.v3i2.7326 DOI: https://doi.org/10.24259/fs.v3i2.7326
(18). Li, L., Li, N., Lu, D., & Chen, Y. (2019). Mapping Moso bamboo forest and its on-year and off-year distribution in a subtropical region using time-series Sentinel-2 and Landsat 8 data. Remote Sensing of Environment, 231, 111265. doi:10.1016/j.rse.2019.111265 DOI: https://doi.org/10.1016/j.rse.2019.111265
(19). Chuvieco, E. 2010. Teledetección Ambiental (3ra Ed). Barcelona, España: Ariel Ed.
(20). Mishra, P., Rai, A., & Rai, S. (2020). Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 133-143. https://doi.org/10.1016/j.ejrs.2019.02.001 DOI: https://doi.org/10.1016/j.ejrs.2019.02.001
(21). Salghuna, N., Prasad, P., & Kumari, J. (2018). Assessing the impact of land use and land cover changes on the remnant patches of Kondapalli reserve forest of the Eastern Ghats, Andhra Pradesh, India. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 419-429. https://doi.org/10.1016/j.ejrs.2018.01.005 DOI: https://doi.org/10.1016/j.ejrs.2018.01.005
(22). Atsri, H. K., Konko, Y., Cuni-Sanchez, A., Abotsi, K. E., & Kokou, K. (2018). Changes in the West African forest-savanna mosaic, insights from central Togo. PLOS ONE, 13(10), e0203999. doi:10.1371/journal.pone.0203999 DOI: https://doi.org/10.1371/journal.pone.0203999
(23). Tu, Y., Lang, W., Yu, L., Li, Y., Jiang, J., Qin, Y., et al. (2020). Improved Mapping Results of 10 m Resolution Land Cover Classification in Guangdong, China Using Multisource Remote Sensing Data With Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5384–5397. doi:10.1109/jstars.2020.3022210 DOI: https://doi.org/10.1109/JSTARS.2020.3022210
(24). Eskandari, S., Reza Jaafari, M., Oliva, P., Ghorbanzadeh, O., & Blaschke, T. (2020). Mapping Land Cover and Tree Canopy Cover in Zagros Forests of Iran: Application of Sentinel-2, Google Earth, and Field Data. Remote Sensing, 12(12), 1912. doi:10.3390/rs12121912 DOI: https://doi.org/10.3390/rs12121912
(25). Hu, L., Xu, N., Liang, J., Li, Z., Chen, L., & Zhao, F. (2020). Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sensing, 12(19), 3120. doi:10.3390/rs12193120 DOI: https://doi.org/10.3390/rs12193120
(26). Koskikala, J., Kukkonen, M., & Käyhkö, N. (2020). Mapping natural forest remnants with multi-source and multi-temporal remote sensing data for more informed management of global biodiversity hotspots. Remote Sensing, 12(9), 1429. https://doi.org/10.3390/rs12091429 DOI: https://doi.org/10.3390/rs12091429
(27). Parida, B., & Kumar, P. (2020). Mapping and dynamic analysis of mangrove forest during 2009–2019 using landsat–5 and sentinel–2 satellite data along Odisha Coast. Tropical Ecology, 61(4), 538-549. https://doi.org/10.1007/s42965-020-00112-7 DOI: https://doi.org/10.1007/s42965-020-00112-7
(28). Pilaš, I., Gašparović, M., Novkinić, A., Klobucar, D. (2020). Mapping of the canopy openings in mixed beech–fir forest at Sentinel-2 subpixel level using UAV and machine learning approach. Remote Sensing, 12(23), 3925. https://doi.org/10.3390/rs12233925 DOI: https://doi.org/10.3390/rs12233925
(29). Furuya, D. E. G., Aguiar, J. A. F., Estrabis, N. V., Pinheiro, M. M. F., Furuya, M. T. G., Pereira, D. R., et al. (2020). A Machine Learning Approach for Mapping Forest Vegetation in Riparian Zones in an Atlantic Biome Environment Using Sentinel-2 Imagery. Remote Sensing, 12(24), 4086. doi:10.3390/rs12244086 DOI: https://doi.org/10.3390/rs12244086
(30). Miranda, E., Mutiara, A., & Ernastuti, W. (2019). Forest classification method based on convolutional neural networks and Sentinel-2 satellite imagery. International Journal of Fuzzy Logic and Intelligent Systems, 19(4), 272-282. https://doi.org/10.5391/IJFIS.2019.19.4.272 DOI: https://doi.org/10.5391/IJFIS.2019.19.4.272
(31). Sothe, C., Almeida, C., Liesenberg, V., & Schimalski, M. (2017). Evaluating Sentinel-2 and Landsat-8 Data to Map Sucessional Forest Stages in a Subtropical Forest in Southern Brazil. Remote Sensing, 9(8), 838. doi:10.3390/rs9080838 DOI: https://doi.org/10.3390/rs9080838
(32). Cheng, K., & Wang, J. (2019a). Forest-Type Classification Using Time-Weighted Dynamic Time Warping Analysis in Mountain Areas: A Case Study in Southern China. Forests, 10(11), 1040. https://doi.org/10.3390/f10111040 DOI: https://doi.org/10.3390/f10111040
(33). Waśniewski, A., Hościło, A., Zagajewski, B., Moukétou-Tarazewicz, D. (2020). Assessment of sentinel-2 satellite images and random forest classifier for rainforest mapping in Gabon. Forests, 11(9), 941. https://doi.org/10.3390/f11090941 DOI: https://doi.org/10.3390/f11090941
(34). Erinjery, J., Singh, M., & Kent, R. (2018). Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sensing of Environment, 216, 345-354. https://doi.org/10.1016/j.rse.2018.07.006 DOI: https://doi.org/10.1016/j.rse.2018.07.006
(35). Mondal, P., Liu, X., Fatoyinbo, T. E., & Lagomasino, D. (2019). Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sensing, 11(24), 2928. doi:10.3390/rs11242928 DOI: https://doi.org/10.3390/rs11242928
(36). Isaienkov, K., Yushchuk, M., Khramtsov, V., & Seliverstov, O. (2021). Deep Learning for Regular Change Detection in Ukrainian Forest Ecosystem With Sentinel-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 364–376. doi:10.1109/jstars.2020.3034186 DOI: https://doi.org/10.1109/JSTARS.2020.3034186
(37). Veettil, B. K., Van, D. D., Quang, N. X., & Hoai, P. N. (2020). Spatiotemporal dynamics of mangrove forests in the Andaman and Nicobar Islands (India). Regional Studies in Marine Science, 101455. doi:10.1016/j.rsma.2020.101455 DOI: https://doi.org/10.1016/j.rsma.2020.101455
(38). Mikeladze, G., Gavashelishvili, A., Akobia, I., Metreveli, V. (2020). Estimation of forest cover change using Sentinel-2 multi-spectral imagery in Georgia (the Caucasus). iForest-Biogeosciences and Forestry, 13(4), 329. https://doi.org/10.3832/ifor3386-013 DOI: https://doi.org/10.3832/ifor3386-013
(39). Puhm, M., Deutscher, J., Hirschmugl, M., Wimmer, A., Schmitt, U., & Schardt, M. (2020). A Near Real-Time Method for Forest Change Detection Based on a Structural Time Series Model and the Kalman Filter. Remote Sensing, 12(19), 3135. doi:10.3390/rs12193135 DOI: https://doi.org/10.3390/rs12193135
(40). Pitkänen, T. P., Sirro, L., Häme, L., Häme, T., Törmä, M., & Kangas, A. (2020). Errors related to the automatized satellite-based change detection of boreal forests in Finland. International Journal of Applied Earth Observation and Geoinformation, 86, 102011. doi:10.1016/j.jag.2019.102011 DOI: https://doi.org/10.1016/j.jag.2019.102011
(41). Cheng, K., & Wang, J. (2019b). Forest type classification based on integrated spectral-spatial-temporal features and random forest algorithm-A case study in the qinling mountains. Forests, 10(7), 559. https://doi.org/10.3390/f10070559 DOI: https://doi.org/10.3390/f10070559
(42). Perbet, P., Fortin, M., Ville, A., & Béland, M. (2019). Near real-time deforestation detection in Malaysia and Indonesia using change vector analysis with three sensors. International Journal of Remote Sensing, 1–20. doi:10.1080/01431161.2019.1579390 DOI: https://doi.org/10.1080/01431161.2019.1579390
(43). Anchang, J. Y., Prihodko, L., Ji, W., Kumar, S. S., Ross, C. W., Yu, Q., et al. (2020). Toward Operational Mapping of Woody Canopy Cover in Tropical Savannas Using Google Earth Engine. Frontiers in Environmental Science, 8. doi:10.3389/fenvs.2020.00004 DOI: https://doi.org/10.3389/fenvs.2020.00004
(44). Wang, D., Wan, B., Qiu, P., Su, Y., Guo, Q., Wang, R., et al. (2018). Evaluating the Performance of Sentinel-2, Landsat 8 and Pléiades-1 in Mapping Mangrove Extent and Species. Remote Sensing, 10(9), 1468. doi:10.3390/rs10091468 DOI: https://doi.org/10.3390/rs10091468
(45). Baloloy, A. B., Blanco, A. C., Sta. Ana, R. R. C., & Nadaoka, K. (2020). Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 95–117. doi:10.1016/j.isprsjprs.2020.06.001 DOI: https://doi.org/10.1016/j.isprsjprs.2020.06.001
(46). Heckel, K., Urban, M., Schratz, P., Mahecha, M. D., & Schmullius, C. (2020). Predicting Forest Cover in Distinct Ecosystems: The Potential of Multi-Source Sentinel-1 and -2 Data Fusion. Remote Sensing, 12(2), 302. doi:10.3390/rs12020302 DOI: https://doi.org/10.3390/rs12020302
(47). Yu, X., Lu, D., Jiang, X., Li, G., Chen, Y., Li, D., & Chen, E. (2020). Examining the Roles of Spectral, Spatial, and Topographic Features in Improving Land-Cover and Forest Classifications in a Subtropical Region. Remote Sensing, 12(18), 2907. doi:10.3390/rs12182907 DOI: https://doi.org/10.3390/rs12182907
(48). Duan, Q., Tan, M., Guo, Y., Wang, X., & Xin, L. (2019). Understanding the Spatial Distribution of Urban Forests in China Using Sentinel-2 Images with Google Earth Engine. Forests, 10(9), 729. doi:10.3390/f10090729 DOI: https://doi.org/10.3390/f10090729
(49). Liu, Y., Gong, W., Hu, X., & Gong, J. (2018). Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sensing, 10(6), 946. doi:10.3390/rs10060946 DOI: https://doi.org/10.3390/rs10060946
(50). Perea-Ardila, M., Oviedo-Barrero, F., & Leal-Villamil, J. (2019). Cartografía de bosques de manglar mediante imágenes de sensores remotos: estudio de caso Buenaventura, Colombia. Revista de Teledetección, 53, 73-86. https://doi.org/10.4995/raet.2019.11684 DOI: https://doi.org/10.4995/raet.2019.11684
(51). Van Passel, J., De Keersmaecker, W., & Somers, B. (2020). Monitoring woody cover dynamics in tropical dry forest ecosystems using sentinel-2 satellite imagery. Remote Sensing, 12(8), 1276. https://doi.org/10.3390/rs12081276 DOI: https://doi.org/10.3390/rs12081276
(52). Ottosen, T.-B., Petch, G., Hanson, M., & Skjøth, C. A. (2020). Tree cover mapping based on Sentinel-2 images demonstrate high thematic accuracy in Europe. International Journal of Applied Earth Observation and Geoinformation, 84, 101947. doi:10.1016/j.jag.2019.101947 DOI: https://doi.org/10.1016/j.jag.2019.101947
(53). Veerabhadraswamy, N., Devagiri, G., & Khaple, A. (2021). Fusion of complementary information of SAR and optical data for forest cover mapping using random forest algorithm. Current Science, 120(1), 193-199. https://www.researchgate.net/publication/348518698_Fusion_of_complementary_information_of_SAR_and_optical_data_for_forest_cover_mapping_using_random_forest_algorithm DOI: https://doi.org/10.18520/cs/v120/i1/193-199
(54). Crowson, M., Warren‐Thomas, E., Hill, J. K., Hariyadi, B., Agus, F., Saad, A., et al. (2018). A comparison of satellite remote sensing data fusion methods to map peat swamp forest loss in Sumatra, Indonesia. Remote Sensing in Ecology and Conservation, 5(3), 247–258. doi:10.1002/rse2.102 DOI: https://doi.org/10.1002/rse2.102
(55). Daryaei, A., Sohrabi, H., Atzberger, C., & Immitzer, M. (2020). Fine-scale detection of vegetation in semi-arid mountainous areas with focus on riparian landscapes using Sentinel-2 and UAV data. Computers and Electronics in Agriculture, 177, 105686. doi:10.1016/j.compag.2020.105686 DOI: https://doi.org/10.1016/j.compag.2020.105686
(56). Bihamta Toosi, N., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & T. Waser, L. (2020). Land Cover Classification in Mangrove Ecosystems Based on VHR Satellite Data and Machine Learning—An Upscaling Approach. Remote Sensing, 12(17), 2684. doi:10.3390/rs12172684 DOI: https://doi.org/10.3390/rs12172684
(57). Dymond, J. R., Zörner, J., Shepherd, J. D., Wiser, S. K., Pairman, D., & Sabetizade, M. (2019). Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR. Remote Sensing, 11(16), 1911. doi:10.3390/rs11161911 DOI: https://doi.org/10.3390/rs11161911
(58). Szostak, M., Pietrzykowski, M., & Likus-Cieślik, J. (2020). Reclaimed area land cover mapping using Sentinel-2 imagery and LiDAR point clouds. Remote Sensing, 12(2), 261. https://doi.org/10.3390/rs12020261 DOI: https://doi.org/10.3390/rs12020261
(59). Szostak, M., Hawryło, P., & Piela, D. (2018). Using of Sentinel-2 images for automation of the forest succession detection. European Journal of Remote Sensing, 51(1), 142-149. https://doi.org/10.1080/22797254.2017.1412272 DOI: https://doi.org/10.1080/22797254.2017.1412272
(60). Kovačević, J., Cvijetinović, Ž., Lakušić, D., Kuzmanović, N., Šinžar-Sekulić, J., Mitrović, M., et al. (2020). Spatio-Temporal Classification Framework for Mapping Woody Vegetation from Multi-Temporal Sentinel-2 Imagery. Remote Sensing, 12(17), 2845. doi:10.3390/rs12172845 DOI: https://doi.org/10.3390/rs12172845
(61). Spracklen, B., & Spracklen, D. (2019). Identifying European old-growth forests using remote sensing: a study in the Ukrainian Carpathians. Forests, 10(2), 127. https://doi.org/10.3390/f10020127 DOI: https://doi.org/10.3390/f10020127
(62). Hoang, T. T., Truong, V. T., Hayashi, M., Tadono, T., & Nasahara, K. N. (2020). New JAXA High-Resolution Land Use/Land Cover Map for Vietnam Aiming for Natural Forest and Plantation Forest Monitoring. Remote Sensing, 12(17), 2707. doi:10.3390/rs12172707 DOI: https://doi.org/10.3390/rs12172707
(63). Nguyen H., Dung, T., & Kappas, M. (2020b). Land cover and forest type classification by values of vegetation indices and forest structure of tropical lowland forests in central Vietnam. International Journal of Forestry Research, 2020, 8896310. https://doi.org/10.1155/2020/8896310 DOI: https://doi.org/10.1155/2020/8896310
(64). Biswas, S., Huang, Q., Anand, A., Mon, M. S., Arnold, F.-E., & Leimgruber, P. (2020). A Multi Sensor Approach to Forest Type Mapping for Advancing Monitoring of Sustainable Development Goals (SDG) in Myanmar. Remote Sensing, 12(19), 3220. doi:10.3390/rs12193220 DOI: https://doi.org/10.3390/rs12193220
(65). Omarzadeh, D., Afraz, M., Akbari, M., Eftekhari, M. (2021). Evaluation of changes in the Forest Environment in Guilan Province using a combination of Remote Sensing Data. The Malaysian Forester, 84(1), 65-83. https://www.researchgate.net/publication/347835634_EVALUATION_OF_CHANGES_IN_THE_FOREST_ENVIRONMENT_IN_GUILLEN_PROVINCE_USING_A_COMBINATION_OF_REMOTE_SENSING_DATA
(66). Mihai, B., Săvulescu, I., Rujoiu-Mare, M., & Nistor, C. (2017). Recent forest cover changes (2002–2015) in the Southern Carpathians: A case study of the Iezer Mountains, Romania. Science of The Total Environment, 599-600, 2166–2174. doi:10.1016/j.scitotenv.2017.04.226 DOI: https://doi.org/10.1016/j.scitotenv.2017.04.226
(67). Nguyen, H., Tran, L., Le, A., Nghia, N., Duong, L., Nguyen, H., Bohm. S., Premnath, C. (2020a). Monitoring changes in coastal mangrove extents using multi-temporal satellite data in selected communes, Hai Phong city, Vietnam. Forest and Society, 4, 256-270. https://doi.org/10.24259/fs.v4i1.8486 DOI: https://doi.org/10.24259/fs.v4i1.8486
(68). Appiah Mensah, A., Sarfo, D., & Partey, S. (2019). Assessment of vegetation dynamics using remote sensing and GIS: A case of Bosomtwe Range Forest Reserve, Ghana. The Egyptian Journal of Remote Sensing and Space Science, 22, 145-154. 10.1016/j.ejrs.2018.04.004 DOI: https://doi.org/10.1016/j.ejrs.2018.04.004
(69). Spadoni, G. L., Cavalli, A., Congedo, L., & Munafò, M. (2020). Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography. Remote Sensing Applications: Society and Environment, 100419. doi:10.1016/j.rsase.2020.100419 DOI: https://doi.org/10.1016/j.rsase.2020.100419
(70). Pérez, M, Serna, M., Delgado H., Caballero, M., Villa, G. (2020). El programa Copernicus para la monitorización del territorio y los objetivos del desarrollo sostenible. Instituto Geográfico Nacional. España. https://www.ign.es/web/libros-digitales/programa-copernicus-monitorizacion-territorio
(71). Ganz, S., Adler, P., & Kändler, G. (2020). Forest Cover Mapping Based on a Combination of Aerial Images and Sentinel-2 Satellite Data Compared to National Forest Inventory Data. Forests, 11(12), 1322. https://doi.org/10.3390/f11121322 DOI: https://doi.org/10.3390/f11121322
Accepted 2023-09-28
Published 2023-06-26
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).