Contenido principal del artículo

Autores

Se propone y analiza numéricamente un sensor para la caracterización de la permitividad dieléctrica de substancias en la región de las microondas. Para ello, se emplea una antena basada en un anillo resonador rectangular, en un sustrato TMM® 13i. Este es un compuesto cerámico de polímero dieléctrico termoestable con un factor de disipación de 0,0019 a 10 GHz, el cual nos permite obtener un dispositivo altamente resonante a la frecuencia de 2.4 GHz y 5 GHz. Se emplea el método anillo resonador con un capilar de vidrio pyrex en el centro para interrogar las características eléctricas de este sensor tales como la permitividad, permeabilidad y conductividad. Los resultados obtenidos revelan que el sensor propuesto presenta una sensibilidad de desplazamiento en la frecuencia fundamental, cuando este es empleado en la caracterización de muestras cuya permitividad está dentro del rango 1, a 32.5. Adicionalmente este presenta un tamaño compacto, pues solo mide 42 mm x 46 mm. Además, fueron indagados de manera simulada algunos metales pesados que se pueden encontrar en el medio ambiente. Los resultados obtenidos nos permiten evidenciar que el sensor propuesto resulta ser una alternativa interesante debido a que su fabricación es simple y económica. También, este puede ser fácilmente integrado en redes de sensado inalámbrico, las cuales son de amplio interés a nivel industrial ya que puede ser fácilmente integrado con tecnologías emergentes como internet de las cosas.

Edison A. Zapata Ochoa, Instituto Tecnológico Metropolitano, Facultad de Ingenierías. Medellín, Colombia.

https://orcid.org/0000-0002-5626-2320

Hernán D. Machuca, Instituto Tecnológico Metropolitano, Facultad de Ingenierías. Medellín, Colombia

https://orcid.org/0000-0002-1029-2794

1.
Zapata Ochoa EA, Machuca HD, García V. Caracterización de líquidos en la región de microondas usando sensor de permitividad dieléctrica. inycomp [Internet]. 26 de julio de 2023 [citado 10 de mayo de 2024];25(3):e-20712569. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12569

D. Ashokan and K. Rajathi, "A green Approach for Synthesis of Pyridinium Sulfonamide Ionic Liquids: Characterization and Their Biological Activities," Chem. Africa. no. 0123456789, 2023, doi: 10.1007/s42250-023-00653-z.

https://doi.org/10.1007/s42250-023-00653-z DOI: https://doi.org/10.1007/s42250-023-00653-z

H. Y. Gan et al., "Differential Microwave Microfluidic Sensor Based on Microstrip Complementary Split-Ring Resonator (MCSRR) Structure," IEEE Sens. J., vol. 20, no. 11, pp. 5876-5884, 2020, doi: 10.1109/JSEN.2020.2973196.

https://doi.org/10.1109/JSEN.2020.2973196 DOI: https://doi.org/10.1109/JSEN.2020.2973196

A. Benleulmi, N. Boubekeur, and D. Massicotte, "Novel substrate integrated waveguide architectures for microfluidic biosensing and environmental detection," I2MTC 2020 - Int. Instrum. Meas. Technol. Conf. Proc., pp. 1-5, 2020, doi: 10.1109/I2MTC43012.2020.9129240.

https://doi.org/10.1109/I2MTC43012.2020.9129240 DOI: https://doi.org/10.1109/I2MTC43012.2020.9129240

R. A. Alahnomi, Z. Zakaria, E. Ruslan, S. R. Ab Rashid, and A. A. Mohd Bahar, "High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection," IEEE Sens. J., vol. 17, no. 9, pp. 2766-2775, 2017, doi: 10.1109/JSEN.2017.2682266.

https://doi.org/10.1109/JSEN.2017.2682266 DOI: https://doi.org/10.1109/JSEN.2017.2682266

P. Velez, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martin, "Highly-sensitive microwave sensors based on Open Complementary Split Ring Resonators (OCSRRs) for dielectric characterization and solute concentration measurement in liquids," IEEE Access, vol. 6, no. c, pp. 48324-48338, 2018, doi: 10.1109/ACCESS.2018.2867077.

https://doi.org/10.1109/ACCESS.2018.2867077 DOI: https://doi.org/10.1109/ACCESS.2018.2867077

W. Liu, H. Sun, and L. Xu, "A microwave method for dielectric characterization measurement of small liquids using a metamaterial-based sensor," Sensors (Switzerland), vol. 18, no. 5, 2018, doi: 10.3390/s18051438.

https://doi.org/10.3390/s18051438 DOI: https://doi.org/10.3390/s18051438

Z. Wei et al., "A high-sensitivity microfluidic sensor based on a substrate integrated waveguide re-entrant cavity for complex permittivity measurement of liquids," Sensors (Switzerland), vol. 18, no. 11, 2018, doi: 10.3390/s18114005.

https://doi.org/10.3390/s18114005 DOI: https://doi.org/10.3390/s18114005

E. Y. Teran-Bahena, S. C. Sejas-Garcia, and R. Torres-Torres, "Permittivity Determination Considering the Metal Surface Roughness Effect on the Microstrip Line Series Inductance and Shunt Capacitance," IEEE Trans. Microw. Theory Tech., vol. 68, no. 6, pp. 2428-2434, Jun. 2020, doi: 10.1109/TMTT.2020.2979964.

https://doi.org/10.1109/TMTT.2020.2979964 DOI: https://doi.org/10.1109/TMTT.2020.2979964

M. Gil, P. Velez, F. Aznar-Ballesta, J. Munoz-Enano, and F. Martin, "Differential Sensor Based on Electroinductive Wave Transmission Lines for Dielectric Constant Measurements and Defect Detection," IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1876-1886, 2020, doi: 10.1109/TAP.2019.2938609.

https://doi.org/10.1109/TAP.2019.2938609 DOI: https://doi.org/10.1109/TAP.2019.2938609

T. Chretiennot, D. Dubuc, and K. Grenier, "A Microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions," IEEE Trans. Microw. Theory Tech., vol. 61, no. 2, pp. 972-978, 2013, doi: 10.1109/TMTT.2012.2231877.

https://doi.org/10.1109/TMTT.2012.2231877 DOI: https://doi.org/10.1109/TMTT.2012.2231877

J. Naqui, C. Damm, A. Wiens, R. Jakoby, L. Su, and F. Martin, "Transmission lines loaded with pairs of magnetically coupled stepped impedance resonators (SIRs): Modeling and application to microwave sensors," IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, 2014, doi: 10.1109/MWSYM.2014.6848494.

https://doi.org/10.1109/MWSYM.2014.6848494 DOI: https://doi.org/10.1109/MWSYM.2014.6848494

H. Hao, D. Wang, Z. Wang, B. Yin, and W. Ruan, "Design of a high sensitivity microwave sensor for liquid dielectric constant measurement," Sensors (Switzerland), vol. 20, no. 19, pp. 1-14, 2020, doi: 10.3390/s20195598.

https://doi.org/10.3390/s20195598 DOI: https://doi.org/10.3390/s20195598

A. Aquino, C. G. Juan, B. Potelon, and C. Quendo, "Dielectric Permittivity Sensor Based on Planar Open-Loop Resonator," IEEE Sensors Lett., vol. 5, no. 3, pp. 10-13, 2021, doi: 10.1109/LSENS.2021.3055544.

https://doi.org/10.1109/LSENS.2021.3055544 DOI: https://doi.org/10.1109/LSENS.2021.3055544

J. G. D. Oliveira, J. G. D. Junior, E. N. M. G. Pinto, V. P. S. Neto, and A. G. D'Assunção, "A new planar microwave sensor for building materials complex permittivity characterization," Sensors (Switzerland), vol. 20, no. 21, pp. 1-15, 2020, doi: 10.3390/s20216328.

https://doi.org/10.3390/s20216328 DOI: https://doi.org/10.3390/s20216328

M. Zhang et al., "Microfluidic microwave biosensor based on biomimetic materials for the quantitative detection of glucose," Sci. Rep., vol. 12, no. 1, pp. 1-11, 2022, doi: 10.1038/s41598-022-20285-6.

https://doi.org/10.1038/s41598-022-20285-6 DOI: https://doi.org/10.1038/s41598-022-20285-6

S. Liao, B. Gao, L. Tong, X. Yang, Y. Li, and M. Li, "Measuring complex permittivity of soils by waveguide transmission/reflection method," Int. Geosci. Remote Sens. Symp., vol. 2019-July, no. 1, pp. 7144-7147, 2019, doi: 10.1109/IGARSS.2019.8900535.

https://doi.org/10.1109/IGARSS.2019.8900535 DOI: https://doi.org/10.1109/IGARSS.2019.8900535

J. G. D. Oliveira, E. N. M. G. Pinto, V. P. S. Neto, and A. G. D'assunção, "CSRR-based microwave sensor for dielectric materials characterization applied to soil water content determination," Sensors (Switzerland), vol. 20, no. 1, 2020, doi: 10.3390/s20010255.

https://doi.org/10.3390/s20010255 DOI: https://doi.org/10.3390/s20010255

R. A. Alahnomi et al., "Review of Recent Microwave Planar Resonator-Based Sensors :," Sens. Rev., vol. 2267, no. 21, pp. 1-38, 2021.

https://doi.org/10.3390/s21072267 DOI: https://doi.org/10.3390/s21072267

"Submersible Printed Split-Ring Resonator-Based Sensor for Thin-Film Detection and Permittivity Characterization - IEEE Journals & Magazine."

A. A. Mohd Bahar, Z. Zakaria, M. K. Md. Arshad, A. A. M. Isa, Y. Dasril, and R. A. Alahnomi, "Real Time Microwave Biochemical Sensor Based on Circular SIW Approach for Aqueous Dielectric Detection," Sci. Rep., vol. 9, no. 1, pp. 1-13, 2019, doi: 10.1038/s41598-019-41702-3.

https://doi.org/10.1038/s41598-019-41702-3 DOI: https://doi.org/10.1038/s41598-019-41702-3

E. M. Amin and N. Karmakar, "Development of a chipless RFID temperature sensor using cascaded spiral resonators," in 2011 IEEE SENSORS Proceedings, Oct. 2011, pp. 554-557. doi: 10.1109/ICSENS.2011.6127344.

https://doi.org/10.1109/ICSENS.2011.6127344 DOI: https://doi.org/10.1109/ICSENS.2011.6127344

S. Wang and M. S. Tong, "Mechanical deformation detection of building structures using microstrip patch antennas as sensors," IEEE Sens. J., vol. 18, no. 21, pp. 8676-8684, 2018, doi: 10.1109/JSEN.2018.2865551.

https://doi.org/10.1109/JSEN.2018.2865551 DOI: https://doi.org/10.1109/JSEN.2018.2865551

R. Becker, "Non-invasive cancer detection using volatile biomarkers: Is urine superior to breath?," Med. Hypotheses, vol. 143, p. 110060, 2020, doi: 10.1016/j.mehy.2020.110060.

https://doi.org/10.1016/j.mehy.2020.110060 DOI: https://doi.org/10.1016/j.mehy.2020.110060

Z. O. Rodríguez-Moré, H. Lobato-Morales, R. A. Chávez-Pérez, and J. L. Medina-Monroy, "Complex dielectric permittivity of rum and its mixtures with methanol, ethanol, and water at frequencies up to 15 GHz," J. Microw. Power Electromagn. Energy, vol. 52, no. 1, pp. 16-30, 2018, doi: 10.1080/08327823.2017.1421013.

https://doi.org/10.1080/08327823.2017.1421013 DOI: https://doi.org/10.1080/08327823.2017.1421013

H. Hamzah, A. Abduljabar, J. Lees, and A. Porch, "A compact microwave microfluidic sensor using a re-entrant cavity," Sensors (Switzerland), vol. 18, no. 3, 2018, doi: 10.3390/s18030910.

https://doi.org/10.3390/s18030910 DOI: https://doi.org/10.3390/s18030910

D. Rodríguez Ávila, E. González Gutiérrez, M. Coto Mederos, and F. Marante Rizo, "Consideraciones de diseño de antenas de microcinta multibandas," Rev. Digit. las Tecnol. la Inf. y las Comun., vol. 13, no. 2, pp. 1-12, 2014.

A. Hernández, F. López, O. Ossa, A. Hernández, F. López, and O. Ossa, "Generación de doble banda en antenas de Microcinta rectangulares utilizando ranuras separadas en secuencia de cantor," Ingeniare. Rev. Chil. Ing., vol. 28, no. 2, pp. 204-213, Jun. 2020, doi: 10.4067/S0718-33052020000200204.

https://doi.org/10.4067/S0718-33052020000200204 DOI: https://doi.org/10.4067/S0718-33052020000200204

G. Andria, F. Attivissimo, A. Di Nisio, A. Trotta, S. M. Camporeale, and P. Pappalardi, "Design of a microwave sensor for measurement of water in fuel contamination," Meas. J. Int. Meas. Confed., vol. 136, pp. 74-81, 2019, doi: 10.1016/j.measurement.2018.12.076.

https://doi.org/10.1016/j.measurement.2018.12.076 DOI: https://doi.org/10.1016/j.measurement.2018.12.076

J. Krupka, "Frequency domain complex permittivity measurements at microwave frequencies," Meas. Sci. Technol., vol. 17, no. 6, 2006, doi: 10.1088/0957-0233/17/6/R01.

https://doi.org/10.1088/0957-0233/17/6/R01 DOI: https://doi.org/10.1088/0957-0233/17/6/R01

E. E. Reyes, M. A. Dominguez, and D. A. Catano, "Diseño de un sensor de permitividad dieléctrica relativa de un medio empleando una antena de microcinta con estructuras metamateriales," Actas Ing., no. October 2015, pp. 110-114, 2015.

C. Dalmay, A. Pothier, P. Blondy, F. Lalloue, and M. O. Jauberteau, "Label free biosensors for human cell characterization using radio and microwave frequencies," in IEEE MTT-S International Microwave Symposium Digest, 2008, pp. 911-914. doi: 10.1109/MWSYM.2008.4632981.

https://doi.org/10.1109/MWSYM.2008.4632981 DOI: https://doi.org/10.1109/MWSYM.2008.4632981

A. Soltan, R. A. Sadeghzadeh, and S. Mohammad-Ali-Nezhad, "Microwave sensor for liquid classification and permittivity estimation of dielectric materials," Sensors Actuators A Phys., vol. 336, p. 113397, 2022, doi: 10.1016/j.sna.2022.113397.

https://doi.org/10.1016/j.sna.2022.113397 DOI: https://doi.org/10.1016/j.sna.2022.113397

M. Santra and K. U. Limaye, "Estimation of complex permittivity of arbitrary shape and size dielectric samples using cavity measurement technique at microwave frequencies," IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 718-721, 2005, doi: 10.1109/TMTT.2004.840570.

https://doi.org/10.1109/TMTT.2004.840570 DOI: https://doi.org/10.1109/TMTT.2004.840570

B. Meng, J. Booske, and R. Cooper, "Short Papers," vol. 43, no. 11, pp. 2633-2636, 1995.

https://doi.org/10.1109/22.473190 DOI: https://doi.org/10.1109/22.473190

J. Naqui and F. Martin, "Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors," IEEE Trans. Microw. Theory Tech., vol. 61, no. 12, pp. 4700-4713, Dec. 2013, doi: 10.1109/TMTT.2013.2285356.

https://doi.org/10.1109/TMTT.2013.2285356 DOI: https://doi.org/10.1109/TMTT.2013.2285356

J. Naqui, M. Durán-Sindreu, and F. Martín, "Novel sensors based on the symmetry properties of split ring resonators (SRRs)," Sensors, vol. 11, no. 8, pp. 7545-7553, 2011, doi: 10.3390/s110807545.

https://doi.org/10.3390/s110807545 DOI: https://doi.org/10.3390/s110807545

S. Kulkarni and M. S. Joshi, "Design and Analysis of Shielded Vertically Stacked Ring Resonator as Complex Permittivity Sensor for Petroleum Oils," IEEE Trans. Microw. Theory Tech., vol. 63, no. 8, pp. 2411-2417, Aug. 2015, doi: 10.1109/TMTT.2015.2451110.

https://doi.org/10.1109/TMTT.2015.2451110 DOI: https://doi.org/10.1109/TMTT.2015.2451110

M. Abdolrazzaghi, A. Abdolali, and S. Hashemy, "Improvements in DNA biosensors using joint split ring resonators coupled with thin film microstrip line," Appl. Comput. Electromagn. Soc. J., vol. 31, no. 2, pp. 126-131, 2016.

R. Mirzavand, M. M. Honari, and P. Mousavi, "High-resolution dielectric sensor based on injection-locked oscillators," IEEE Sens. J., vol. 18, no. 1, pp. 141-148, 2018, doi: 10.1109/JSEN.2017.2772923.

https://doi.org/10.1109/JSEN.2017.2772923 DOI: https://doi.org/10.1109/JSEN.2017.2772923

M. Karami, P. Rezaei, S. Kiani, and R. A. Sadeghzadeh, "Modified planar sensor for measuring dielectric constant of liquid materials," Electron. Lett., vol. 53, no. 19, pp. 1300-1302, 2017, doi: 10.1049/el.2017.2481.

https://doi.org/10.1049/el.2017.2481 DOI: https://doi.org/10.1049/el.2017.2481

D. Dag, R. K. Singh, and F. Kong, "Dielectric properties, effect of geometry, and quality changes of whole, nonfat milk powder and their mixtures associated with radio frequency heating," J. Food Eng., vol. 261, no. February, pp. 40-50, 2019, doi: 10.1016/j.jfoodeng.2019.04.017.

https://doi.org/10.1016/j.jfoodeng.2019.04.017 DOI: https://doi.org/10.1016/j.jfoodeng.2019.04.017

A. Benayad and M. Tellache, "A compact energy harvesting multiband rectenna based on metamaterial complementary split ring resonator antenna and modified hybrid junction ring rectifier," Int. J. RF Microw. Comput. Eng., vol. 30, no. 2, pp. 1-11, 2020, doi: 10.1002/mmce.22031.

https://doi.org/10.1002/mmce.22031 DOI: https://doi.org/10.1002/mmce.22031

G. Varshney, R. Singh, V. S. Pandey, and R. S. Yaduvanshi, "Circularly polarized two-port MIMO dielectric resonator antenna," Prog. Electromagn. Res. M, vol. 91, no. April, pp. 19-28, 2020, doi: 10.2528/pierm20011003.

https://doi.org/10.2528/PIERM20011003 DOI: https://doi.org/10.2528/PIERM20011003

E. Maza, "In papyro comparison of TMM (edgeR), RLE (DESeq2), and MRN normalization methods for a simple two-conditions-without-replicates RNA-seq experimental design," Front. Genet., vol. 7, no. SEP, pp. 1-8, 2016, doi: 10.3389/fgene.2016.00164.

https://doi.org/10.3389/fgene.2016.00164 DOI: https://doi.org/10.3389/fgene.2016.00164

G. Rajeshkumar, R. Vishnupriyan, and S. Selvadeepak, "Tissue Mimicking Material an Idealized Tissue Model for Clinical Applications: A Review," Mater. Today Proc., vol. 22, pp. 2696-2703, 2019, doi: 10.1016/j.matpr.2020.03.400.

https://doi.org/10.1016/j.matpr.2020.03.400 DOI: https://doi.org/10.1016/j.matpr.2020.03.400

M. I. Nawaz, Z. Huiling, M. S. S. Nawaz, K. Zakim, S. Zamin, and A. Khan, "A review on wideband microstrip patch antenna design techniques," in ICASE 2013 - Proceedings of the 3rd International Conference on Aerospace Science and Engineering, Aug. 2013, pp. 42-49. doi: 10.1109/ICASE.2013.6785554.

https://doi.org/10.1109/ICASE.2013.6785554 DOI: https://doi.org/10.1109/ICASE.2013.6785554

H. Yiğit and K. Karayahşi, "A novel model-based technique to improve design processes for microstrip antennas," AEU - Int. J. Electron. Commun., vol. 162, no. November 2022, 2023, doi: 10.1016/j.aeue.2023.154570.

https://doi.org/10.1016/j.aeue.2023.154570 DOI: https://doi.org/10.1016/j.aeue.2023.154570

D. Ustun, A. Toktas, and A. Akdagli, "Deep neural network-based soft computing the resonant frequency of E-shaped patch antennas," AEU - Int. J. Electron. Commun., vol. 102, pp. 54-61, 2019, doi: 10.1016/j.aeue.2019.02.011.

https://doi.org/10.1016/j.aeue.2019.02.011 DOI: https://doi.org/10.1016/j.aeue.2019.02.011

K. Sharma and G. P. Pandey, "Efficient modelling of compact microstrip antenna using machine learning," AEU - Int. J. Electron. Commun., vol. 135, no. December 2020, p. 153739, 2021, doi: 10.1016/j.aeue.2021.153739.

https://doi.org/10.1016/j.aeue.2021.153739 DOI: https://doi.org/10.1016/j.aeue.2021.153739

A. Barreto, J. Morales, and I. Hernández, "Análisis y diseño de un monopolo impreso para UWB," Rev. Ing. electrónica, automática y Comun., vol. 35, no. 1, pp. 16-32, 2014.

H. H. M. Ghouz, M. F. Aboee, and M. Aly Ibrahim, "Novel wideband microstrip monopole antenna designs for WiFi/LTE/WiMax devices," IEEE Access, vol. 8, pp. 9532-9539, 2020, doi: 10.1109/ACCESS.2019.2963644.

https://doi.org/10.1109/ACCESS.2019.2963644 DOI: https://doi.org/10.1109/ACCESS.2019.2963644

Ö. Bayraktar, D. Uzer, S. Sinan Gültekin, and R. Top, "Usage of T-Resonator Method at Determination of Dielectric Constant of Fabric Materials for Wearable Antenna Designs," Mater. Today Proc., vol. 18, pp. 1796-1802, 2019, doi: 10.1016/j.matpr.2019.06.666.

https://doi.org/10.1016/j.matpr.2019.06.666 DOI: https://doi.org/10.1016/j.matpr.2019.06.666

F. Shama, M. Hayati, and M. Ekhteraei, "Compact microstrip lowpass filter using meandered unequal T-shaped resonator with ultra-wide rejection band," AEU - Int. J. Electron. Commun., vol. 85, no. December 2017, pp. 78-83, 2018, doi: 10.1016/j.aeue.2017.12.038.

https://doi.org/10.1016/j.aeue.2017.12.038 DOI: https://doi.org/10.1016/j.aeue.2017.12.038

L. M. Castellanos, F. López, and E. Reyes-Vera, "Metamateriales: principales características y aplicaciones," Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 40, no. 156, pp. 395-401, Jul. 2016, doi: 10.18257/RACCEFYN.345.

https://doi.org/10.18257/raccefyn.345 DOI: https://doi.org/10.18257/raccefyn.345

O. D. Ossa Molina, A. L. Forero Camen, C. Espinal Ramirez, E. E. Reyes Vera, and F. E. López Giraldo, "Efectos en el coeficiente de reflexión de una antena de microcinta rectangular debidos a las modificaciones de posición de una ranura en la capa radiante," Rev. EIA, vol. 14, no. 28, pp. 85-97, 2018, doi: 10.24050/reia.v14i28.1143.

https://doi.org/10.24050/reia.v14i28.1143 DOI: https://doi.org/10.24050/reia.v14i28.1143

E. A. Zapata-Ochoa, F. López-Giraldo, and G. D. Goéz, "Simulación de una antena microcinta rectangular espiral multibanda para la aplicación de captación de energía de radiofrecuencia," TecnoLógicas, vol. 24, no. 51, p. e1924, 2021, doi: 10.22430/22565337.1924.

https://doi.org/10.22430/22565337.1924 DOI: https://doi.org/10.22430/22565337.1924

R. Pandey, A. K. Shankhwar, and A. Singh, "Design, analysis, and optimization of dual side printed multiband antenna for rf energy harvesting applications," Prog. Electromagn. Res. C, vol. 102, no. February, pp. 79-91, 2020, doi: 10.2528/pierc20022901.

https://doi.org/10.2528/PIERC20022901 DOI: https://doi.org/10.2528/PIERC20022901

S. A. Kurkin, A. A. Badarin, A. A. Koronovskii, N. S. Frolov, and A. E. Hramov, "Modeling Instabilities in Relativistic Electronic Beams in the CST Particle Studio Environment," vol. 10, no. 1, pp. 59-68, 2018, doi: 10.1134/S2070048218010088.

https://doi.org/10.1134/S2070048218010088 DOI: https://doi.org/10.1134/S2070048218010088

R. C. Ciobanu, R. F. Damian, C. M. Schreiner, M. Aradoaei, A. Sover, and A. M. Raichur, "Simulation of Dielectric Properties of Nanocomposites with Non-Uniform Filler Distribution," Polymers (Basel)., vol. 15, no. 7, 2023, doi: 10.3390/polym15071636.

https://doi.org/10.3390/polym15071636 DOI: https://doi.org/10.3390/polym15071636

Z. Liu, Q. Guo, M. Li, C. Xu, and Y. Li, "Anti-interfering method for environmental foreign bodies for the microstrip antenna sensor," Meas. J. Int. Meas. Confed., vol. 195, no. December 2021, p. 111132, 2022, doi: 10.1016/j.measurement.2022.111132.

https://doi.org/10.1016/j.measurement.2022.111132 DOI: https://doi.org/10.1016/j.measurement.2022.111132

H. Lobato-Morales, A. Corona-Chávez, D. V. B. Murthy, and J. L. Olvera-Cervantes, "Complex permittivity measurements using cavity perturbation technique with substrate integrated waveguide cavities," Rev. Sci. Instrum., vol. 81, no. 6, 2010, doi: 10.1063/1.3442512.

https://doi.org/10.1063/1.3442512 DOI: https://doi.org/10.1063/1.3442512

K. Saeed, R. D. Pollard, and I. C. Hunter, "Substrate integrated waveguide cavity resonators for complex permittivity characterization of materials," IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2340-2347, 2008, doi: 10.1109/TMTT.2008.2003523.

https://doi.org/10.1109/TMTT.2008.2003523 DOI: https://doi.org/10.1109/TMTT.2008.2003523

R. Khajeh Mohammad Lou, M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Compact Multi-Band Circularly Polarized CPW Fed Antenna Based on Metamaterial Resonator," Wirel. Pers. Commun., vol. 94, no. 4, pp. 2853-2863, 2017, doi: 10.1007/s11277-016-3722-x.

https://doi.org/10.1007/s11277-016-3722-x DOI: https://doi.org/10.1007/s11277-016-3722-x

M. M. Hasan et al., "Polarization insensitive dual band metamaterial with absorptance for 5G sub-6 GHz applications," Sci. Rep., vol. 12, no. 1, pp. 1-21, 2022, doi: 10.1038/s41598-022-12106-7.

https://doi.org/10.1038/s41598-022-12106-7 DOI: https://doi.org/10.1038/s41598-022-12106-7

I. Mohammad and H. Huang, "Monitoring fatigue crack growth and opening using antenna sensors," Smart Mater. Struct., vol. 19, no. 5, 2010, doi: 10.1088/0964-1726/19/5/055023.

https://doi.org/10.1088/0964-1726/19/5/055023 DOI: https://doi.org/10.1088/0964-1726/19/5/055023

J. Anguera, A. Fernández, C. Puente, A. Andújar, and J. Groot, "Antenna Boosters versus Flexible Printed Circuit Antennas for IoT Devices," Signals, vol. 3, no. 2, pp. 326-340, 2022, doi: 10.3390/signals3020021.

https://doi.org/10.3390/signals3020021 DOI: https://doi.org/10.3390/signals3020021

D. L. NELSON, A. HERBET, S. BOURGOIN, J. GLOWINSKI, and M. HAMON, "Characteristics of Central 5-HT Receptors and Their Adaptive Changes following Intracerebral 5,7-Dihydroxytryptamine Administration in the Rat," Mol. Pharmacol., vol. 14, no. 6, 1978.

M. Chen, X. Wang, Z. Zhang, K. Sun, C. Cheng, and F. Dang, "Negative permittivity behavior and magnetic properties of C/YIG composites at radio frequency," Mater. Des., vol. 97, pp. 454-458, 2016, doi: 10.1016/j.matdes.2016.02.119.

https://doi.org/10.1016/j.matdes.2016.02.119 DOI: https://doi.org/10.1016/j.matdes.2016.02.119

L. F. Londoño Franco, P. T. Londoño Muñoz, and F. G. Muñoz Garcia, "Los Riesgos De Los Metales Pesados En La Salud Humana Y Animal," Biotecnoloía en el Sect. Agropecu. y Agroindustrial, vol. 14, no. 2, p. 145, 2016, doi: 10.18684/bsaa(14)145-153.

https://doi.org/10.18684/BSAA(14)145-153 DOI: https://doi.org/10.18684/BSAA(14)145-153

S. K. Bose and U. C. Chakraborty, "Resolutions Adopted at the General Session of the VIII All India Pediatric Conference at Vellore on the 21st December, 1956," Indian J. Pediatr., vol. 24, no. 1, p. 14, 1957, doi: 10.1007/BF02796157.

https://doi.org/10.1007/BF02796157 DOI: https://doi.org/10.1007/BF02796157

O. R. Mancilla Villa et al., "Concentración iónica y metales pesados en el agua de riego de la cuenca del río Ayuquila-Tuxcacuesco-Armería," Idesia (Arica), no. ahead, pp. 0-0, 2017, doi: 10.4067/s0718-34292017005000303.

https://doi.org/10.4067/S0718-34292017005000303 DOI: https://doi.org/10.4067/S0718-34292017005000303

Recibido 2022-11-02
Aceptado 2023-07-21
Publicado 2023-07-26