Main Article Content

Authors

At present, the technical and economical pre-feasibility of electrochemical reduction from CO2 to ethanol is unknown. This creates the challenge of mitigating the environmental impact of greenhouse gases. This study presents a model to obtain fuel alcohol from carbon dioxide with Aspen Plus V11 simulation software, utilizing both, the experimental parameters established by Yuan (1), and the scaling of an industrial plant which processes 226,12 Ton of CO2 per day. The kinetic equation for the liquid phase of  s-1 was determined as well as its conditions of operations, allowing the acquisition of 98,74% of conversion, 8,85% of selectivity, 99% ethanol flow at 4.390,18 kg/h and hydrogen Flow at 1.828,96 kg/h. From the cost estimation, the viability of the project was determined with a 85,18% IRR and an investment return of 2,20 years after initiating the project. In conclusion, the use of an electrochemical process to produce fuel alcohol from carbon dioxide was found to be viable economically and industrially

Diana Marcela Rebolledo Cardozo, Universidad del Valle, Cali, Colombia

https://orcid.org/0009-0001-5007-9330

Juan David Romero Henao, Universidad del Valle, Cali, Colombia

https://orcid.org/0009-0002-5240-2549

John Wilman Rodriguez Acosta, Universidad del Valle, Cali, Colombia

https://orcid.org/0000-0002-1805-4328

Nilson de Jesús Marriaga Cabrales, Universidad del Valle, Cali, Colombia

  https://orcid.org/0000-0002-5046-9371

1.
Rebolledo Cardozo DM, Romero Henao JD, Rodriguez Acosta JW, Marriaga Cabrales N de J. Technical and economical pre-feasibility for ethanol production from CO2 electroreduction. inycomp [Internet]. 2023 Jun. 26 [cited 2024 Nov. 22];25(3):e-20512468. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12468

Guerra, Y., Zumalacárregui, L., & Pérez, O. C. (2016). Simulación de la destilación extractiva para la obtención de etanol anhidro empleando glicoles. Ciencia, Docencia y Tecnología, 362-383.

Instituto de hidrología, meteorología y estudios ambientales (IDEAM). (2018). Sistema de información ambiental de Colombia (SIAC). Obtenido de Gases de efecto invernadero (GEI): http://www.siac.gov.co/web/siac/climaticogei

Kauffman, D., Thakkar, J., Siva, R., Matranga, C., Ohodnicki, P., Zeng, C., & Jin, R. (2015). Efficient electrochemical CO2 conversion powered by renewabel energy. ACS Appl. Mater. Interfaces 7, 15626 - 15632.

Loodts, V., Rongy, L., & Wit, A. (2014). Impact of pressure, salt concentration, and temperature on the convective dissolution of carbon dioxide in aqueous solutions. AIP. CHAOS, An Interdisciplinary Journal of Nonlinear Science.

López, D. (2018). Criterios de selección para un agente material de separación en un proceso de deshidratación de etanol por destilación extractiva. Formación Investigativa.

Mah, S.-K., Ching, C., Wu, T., & Chai, S.-P. (2014). The study of reverse osmosis on glycerin solution filtration: Dead-end and crossflow filtrations, transport mechanism, rejection and permeability investigations. Desalination, 66-81.

Mbah, J., Pootoon, R., & Kazuva, C. (2018). AspenPlus TM model of stack cell reactor for the conversion of CO2 and H2S to CH2O2. International Journal of Applied Engineering Research, 13(11), 9042 - 9052.

Ministerio de ambiente y desarrollo sostenible. (2018). Colombia le presenta al mundo su reporte de actualización en cambio climático ante la convención de naciones unidas. Colombia.

Morrinson, A., Van, V., Ramdin, M., Van den Broeke, L., Vlugt, T., & Jong, W. (2019). Modeling the electrochemical conversion of carbon dioxide to formic acid or formate at elevated pressures. Journal of The Electrochemical Society, 77-86.

Uyazán, A., Gil, I., Aguilar, J., Rodríguez, G., & Caicedo, L. (2006). Producción de alcohol carburante por destilación extractiva: Simulación del proceso con glicerol. Ingeniería e Investigación , 45-50.

Vaidyanathan, G. (4 de Noviembre de 2014). The worst climate pollution is carbon dioxide. Obtenido de Scientific American 175, E&E News: https://www.scientificamerican.com/article/the-worst-climate-pollution-is-carbon-dioxide/

Wu, L., Guo, T., & Li, T. (2021). Machine learning accelerated prediction of overpotencial of oxygen evolution reaction of single atom catalysts. IScience, 24.

Xu, J., Zhao, H., Li, W., Li, P., Chen, C., Yue, Z., . . . Yang, H. (2022). Facile strategy for preparing a novel reinforced blend membrane with high cycling stability for vanadium redox flow batteries. Chemical Engineering Journal, 433.

Yaashikaa, P. R., Kumar, P. S., Varjani, S. J., & Saravanan, A. (2019). A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products (review). Journal of CO2 Utilization, 33, 131-147. doi:https://doi.org/10.1016/j.jcou.2019.05.017

Yuan, J., Yang, M.-P., Zhi, W.-Y., Wang, H., Wang, H., & Lu, J.-X. (2019). Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts. Journal of CO2 Utilization, 33, 452 - 460.

Zhang, F., Chen, C., Tang, Y., & Cheng, Z. (2020). CO2 reduction in a microchannel electrochemical reactor with gas-liquid segmented flow. Chemical Engineering Journal.