Isotermas de adsorción para la remoción de cobre y cromo de lixiviados de rellenos sanitarios
Contenido principal del artículo
Introducción: el tratamiento de lixiviados que contienen metales pesados, como el cobre (Cu) y el plomo (Pb), es fundamental debido a que sus niveles a menudo superan los límites permisibles establecidos por la normatividad. Este estudio se centra en evaluar la eficiencia del tratamiento de estos metales utilizando sorción con pulpa de café procesada.
Objetivo: el objetivo de este estudio es determinar las tasas de remoción y la capacidad de adsorción del cobre y plomo en lixiviados de rellenos sanitarios.
Métodos: se realizaron isotermas de adsorción en soluciones individuales utilizando los modelos de Langmuir y Freundlich. Se aplicó un diseño experimental 2^3 y análisis de superficies de respuesta para evaluar las variables. Además, se determinaron parámetros termodinámicos para comprender el tipo de sorción.
Resultados: los resultados indican que el modelo de Langmuir se ajusta mejor a la sorción de cobre y plomo. Las capacidades de adsorción máximas para el cobre en dosis de 1,3 y 5 g de material adsorbente fueron de 0.29, 0.12 y 0.59 mg/g, mientras que para el plomo fueron 0.05, 0.02 y 0.02 mg/g. Las tasas de adsorción para el cobre fueron del 65.3%, 71.0% y 69.4%, y para el plomo del 30.30%, 13.80% y 25.40%, en las respectivas dosis.
Conclusión: Los parámetros termodinámicos sugieren que el mecanismo de adsorción es de tipo químico, lo que respalda la efectividad de la pulpa de café procesada como material adsorbente para la remoción de metales pesados en lixiviados.
Ojeda L, Lozano G, Quintero M, Whitty K, Smith C. Generación de residuos sólidos domiciliarios por periodo estacional: el caso de una ciudad mexicana. In: I Simposio Iberoamericano de Ingeniería de Residuos Castellón. 2008.
Kaza S, Yao L, Bhada-Tata P, van Woerden F. What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications; 2018. DOI: https://doi.org/10.1596/978-1-4648-1329-0
Sáez A, Urdaneta JA. Manejo de residuos sólidos en América Latina y el Caribe. Omnia. 2014;20(3):121–35.
Hoornweg D, Bhada-Tata P. What a waste: a global review of solid waste management. 2012;
Costa AM, Alfaia RG de SM, Campos JC. Landfill leachate treatment in Brazil–An overview. J Environ Manage. 2019;232:110–6. DOI: https://doi.org/10.1016/j.jenvman.2018.11.006
Pap S, Šolević Knudsen T, Radonić J, Maletić S, Igić SM, Turk Sekulić M. Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water. J Clean Prod [Internet]. 2017 Sep [cited 2017 Aug 23];162:958–72. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0959652617312532 DOI: https://doi.org/10.1016/j.jclepro.2017.06.083
Empresas Varias de Medellín. Informe de caracterización del agua a la entrada y salida de la planta de tratamiento en el relleno sanitario La Pradera, ubicado en el municipio de Don Matias- Antioquia. Medellín; 2016.
Braham JE, Bressani R. Pulpa de café: composición, tecnología y utilización. CIID, Ottawa, ON, CA; 1978.
Elías LG. Composición Química de la Pulpa de café y otros Subproductos. Centro Internacional de Investigaciones para el Desarrollo. 1978. 19–29 p.
Gladis Blandón-Castaño; María Teresa Dávila-Arias; Nelson Rodríguez-Valencia. Caracterización microbiológica y físico-química de la pulpa de café sola y con mucílago, en proceso de lombricompostaje. Cenicafé. 1999;50(1):5–23.
Valencia U de. Apuntes de química física avanzada. Superficies sólidas: adsorción y catálisis heterógenea [Internet]. [cited 2016 Mar 29]. Available from: http://www.uv.es/tunon/pdf_doc/Superficies_Solidas_A.pdf
Kırbıyık Ç, Kılıç M, Çepelioğullar Ö, Pütün AE. Use of sesame stalk biomass for the removal of Ni (II) and Zn (II) from aqueous solutions. Water science and technology. 2012;66(2):231–8. DOI: https://doi.org/10.2166/wst.2012.160
Ali RM, Hamad HA, Hussein MM, Malash GF. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng [Internet]. 2016;91:317–32. Available from: http://www.sciencedirect.com/science/article/pii/S0925857416301641 DOI: https://doi.org/10.1016/j.ecoleng.2016.03.015
Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J Hazard Mater [Internet]. 2010;184(1):126–34. Available from: http://www.sciencedirect.com/science/article/pii/S0304389410010307 DOI: https://doi.org/10.1016/j.jhazmat.2010.08.014
Pulido Gutiérrez H, de la Vara Salazar R. Diseño de experimentos : principios estadísticos para el diseño y análisis de investigaciones. 2nd ed. McGraw-Hill, editor. 2012.
Bustamante-Alcántara E. Adsorción de metales pesados en resiudos de café modificados químicamente [Internet]. Universidad Autónoma de Nuevo León, México. Tesis doctoral; 2011. Available from: http://eprints.uanl.mx/2323/1/1080223849.pdf
Dávila-Guzmán NE, de Jesús Cerino-Córdova F, Soto-Regalado E, Rangel-Mendez JR, Díaz-Flores PE, Garza-Gonzalez MT, et al. Copper Biosorption by Spent Coffee Ground: Equilibrium, Kinetics, and Mechanism. Clean (Weinh) [Internet]. 2013;41(6):557–64. Available from: http://dx.doi.org/10.1002/clen.201200109 DOI: https://doi.org/10.1002/clen.201200109
Cubides Guerrero P, Ramírez Franco JH. Adsorción de Cr VI sobre residuos de café. Revista Mutis [Internet]. 2014;4(2):18–25. Available from: http://revistas.utadeo.edu.co/index.php/mutis/article/view/953/992 DOI: https://doi.org/10.21789/22561498.953
Velásquez J. J, Quintana G, Gómez C, Echavarría Y. Adsorción de NI(II) en carbón activado de cascarilla de café. Revista Investigaciones Aplicadas [Internet]. 2008;2(1):1–6. Available from: https://revistas.upb.edu.co/index.php/investigacionesaplicadas/article/view/142/116
Hernández Rodiguez M, Yperman J, Carleer R, Maggen J, Dadi D, Gryglewicz G, et al. Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon. J Environ Chem Eng [Internet]. 2018;6(1):1161–70. Available from: http://www.sciencedirect.com/science/article/pii/S221334371730684X DOI: https://doi.org/10.1016/j.jece.2017.12.045
Alhogbi BG. Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solutions. Sustain Chem Pharm [Internet]. 2017;6:21–5. Available from: http://www.sciencedirect.com/science/article/pii/S2352554117300323 DOI: https://doi.org/10.1016/j.scp.2017.06.004
Edathil AA, Shittu I, Hisham Zain J, Banat F, Haija MA. Novel magnetic coffee waste nanocomposite as effective bioadsorbent for Pb(II) removal from aqueous solutions. J Environ Chem Eng [Internet]. 2018;6(2):2390–400. Available from: http://www.sciencedirect.com/science/article/pii/S2213343718301623 DOI: https://doi.org/10.1016/j.jece.2018.03.041
Naga Babu A, Reddy DS, Kumar GS, Ravindhranath K, Krishna Mohan G v. Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent. J Environ Manage [Internet]. 2018;218:602–12. Available from: http://www.sciencedirect.com/science/article/pii/S0301479718304791 DOI: https://doi.org/10.1016/j.jenvman.2018.04.091
Escudero C, Gabaldón C, Marzal P, Villaescusa I. Effect of EDTA on divalent metal adsorption onto grape stalk and exhausted coffee wastes. J Hazard Mater [Internet]. 2008;152(2):476–85. Available from: http://www.sciencedirect.com/science/article/pii/S0304389407010047 DOI: https://doi.org/10.1016/j.jhazmat.2007.07.013
Boonamnuayvitaya V, Chaiya C, Tanthapanichakoon W, Jarudilokkul S. Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Sep Purif Technol [Internet]. 2004;35(1):11–22. Available from: http://www.sciencedirect.com/science/article/pii/S1383586603001102 DOI: https://doi.org/10.1016/S1383-5866(03)00110-2
Gomez-Gonzalez R, Cerino-Córdova FJ, Garcia-León AM, Soto-Regalado E, Davila-Guzman NE, Salazar-Rabago JJ. Lead biosorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN. J Taiwan Inst Chem Eng [Internet]. 2016;68:201–10. Available from: http://www.sciencedirect.com/science/article/pii/S1876107016303145 DOI: https://doi.org/10.1016/j.jtice.2016.08.038
Utomo HD, Hunter KA. Adsorption of heavy metals by exhausted coffee grounds as a potential treatment method for waste waters. e-Journal of Surface Science and Nanotechnology. 2006;4:504–6. DOI: https://doi.org/10.1380/ejssnt.2006.504
Kaikake K, Hoaki K, Sunada H, Dhakal RP, Baba Y. Removal characteristics of metal ions using degreased coffee beans: Adsorption equilibrium of cadmium (II). Bioresour Technol. 2007;98(15):2787–91. DOI: https://doi.org/10.1016/j.biortech.2006.02.040
Boudrahem F, Aissani-Benissad F, Aït-Amar H. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J Environ Manage [Internet]. 2009;90(10):3031–9. Available from: http://www.sciencedirect.com/science/article/pii/S0301479709001108 DOI: https://doi.org/10.1016/j.jenvman.2009.04.005
Ahsan MdA, Jabbari V, Islam MdT, Kim H, Hernandez-Viezcas JA, Lin Y, et al. Green synthesis of a highly efficient biosorbent for organic, pharmaceutical, and heavy metal pollutants removal: Engineering surface chemistry of polymeric biomass of spent coffee waste. Journal of Water Process Engineering [Internet]. 2018;25:309–19. Available from: http://www.sciencedirect.com/science/article/pii/S2214714418303635 DOI: https://doi.org/10.1016/j.jwpe.2018.08.005
Bodek I, Lyman WJ, Reehl WF, Rosenblatt DH. Environmental inorganic chemistry: properties, processes, and estimation methods. Pergamon press New York:; 1988.
Utomo HD, Hunter KA. Adsorption of Divalent Copper, Zinc, Cadmium and Lead Ions from Aqueous Solution by Waste Tea and Coffee Adsorbents. Environ Technol [Internet]. 2006 Jan 1;27(1):25–32. Available from: https://doi.org/10.1080/09593332708618619 DOI: https://doi.org/10.1080/09593332708618619
Tokimoto T, Kawasaki N, Nakamura T, Akutagawa J, Tanada S. Removal of lead ions in drinking water by coffee grounds as vegetable biomass. J Colloid Interface Sci. 2005;281(1):56–61. DOI: https://doi.org/10.1016/j.jcis.2004.08.083
Impellitteri CA, Allen HE, Lagos G, McLaughlin MJ. Removal of soluble Cu and Pb by the automatic drip coffee brewing process: Application to risk assessment. Human and Ecological Risk Assessment: An International Journal [Internet]. 2000 Apr 1;6(2):313–22. Available from: https://doi.org/10.1080/10807030009380065 DOI: https://doi.org/10.1080/10807030009380065
Guo F, Li X, Liu Y, Peng K, Guo C, Rao Z. Catalytic cracking of biomass pyrolysis tar over char-supported catalysts. Energy Convers Manag [Internet]. 2018;167:81–90. Available from: http://www.sciencedirect.com/science/article/pii/S0196890418304424 DOI: https://doi.org/10.1016/j.enconman.2018.04.094
Valderrama Rios ML, González AM, Lora EES, Almazán del Olmo OA. Reduction of tar generated during biomass gasification: A review. Biomass Bioenergy [Internet]. 2018;108:345–70. Available from: http://www.sciencedirect.com/science/article/pii/S0961953417304026 DOI: https://doi.org/10.1016/j.biombioe.2017.12.002
Valencia U de. Apuntes de química física avanzada. Superficies sólidas: adsorción y catálisis heterógenea [Internet]. 2016 [cited 2018 Aug 31]. Available from: https://www.uv.es/tunon/pdf_doc/Superficies_Solidas_A.pdf
Elaigwu SE, Rocher V, Kyriakou G, Greenway GM. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell. Journal of Industrial and Engineering Chemistry [Internet]. 2014;20(5):3467–73. Available from: http://www.sciencedirect.com/science/article/pii/S1226086X13006680 DOI: https://doi.org/10.1016/j.jiec.2013.12.036
Cruz Olivares J, Barrera Diaz CE. Proceso dinámico para la biosorción de Pb (II) de soluciones acuosas utilizando una columna empacada con cáscara de pimienta(Pimenta dioica L. Merrill). 2013;
Harinath Y, Reddy DHK, Sharma LS, Seshaiah K. Development of hyperbranched polymer encapsulated magnetic adsorbent (Fe3O4@SiO2–NH2-PAA) and its application for decontamination of heavy metal ions. J Environ Chem Eng [Internet]. 2017;5(5):4994–5001. Available from: http://www.sciencedirect.com/science/article/pii/S2213343717304694 DOI: https://doi.org/10.1016/j.jece.2017.09.031
Lee SY, Choi HJ. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution. J Environ Manage [Internet]. 2018;209:382–92. Available from: http://www.sciencedirect.com/science/article/pii/S0301479717312689 DOI: https://doi.org/10.1016/j.jenvman.2017.12.080
Liu J, Hu C, Huang Q. Adsorption of Cu2+, Pb2+, and Cd2+ onto oiltea shell from water. Bioresour Technol [Internet]. 2018; Available from: http://www.sciencedirect.com/science/article/pii/S0960852418312938 DOI: https://doi.org/10.1016/j.biortech.2018.09.040
Aceptado 2024-08-21
Publicado 2024-10-07

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores ceden los derechos patrimoniales a la revista y a la Universidad del Valle sobre los manuscritos aceptados, pero podrán hacer los reusos que consideren pertinentes por motivos profesionales, educativos, académicos o científicos, de acuerdo con los términos de la licencia que otorga la revista a todos sus artículos.
Los artículos serán publicados bajo la licencia Creative Commons 4.0 BY-NC-SA (de atribución, no comercial, sin obras derivadas).