Main Article Content

Authors

Introduction: the treatment of leachates containing heavy metals, such as copper (Cu) and lead (Pb), is crucial as their levels often exceed permissible limits established by regulations. This study focuses on evaluating the efficiency of treating these metals using adsorption with processed coffee pulp.
Objective: the objective of this study is to determine the removal rates and adsorption capacity of copper and lead in landfill leachates.
Methods: adsorption isotherms were conducted in individual solutions using the Langmuir and Freundlich models. A 2^3 experimental design and response surface analysis were applied to evaluate the variables. Additionally, thermodynamic parameters were determined to understand the type of adsorption.
Results: the results indicate that the Langmuir model best fits the adsorption of copper and lead. The maximum adsorption capacities for copper at doses of 1.3 and 5 g of adsorbent material were 0.29, 0.12, and 0.59 mg/g, while for lead, they were 0.05, 0.02, and 0.02 mg/g. The adsorption rates for copper were 65.3%, 71.0%, and 69.4%, and for lead, they were 30.30%, 13.80%, and 25.40% at the respective doses.
Conclusion: the thermodynamic parameters suggest that the adsorption mechanism is chemical in nature, supporting the effectiveness of processed coffee pulp as an adsorbent material for the removal of heavy metals in leachates.

1.
Carvajal Flórez E. Adsorption isotherms for copper and chrome removal from landfill leachate. inycomp [Internet]. 2024 Oct. 7 [cited 2024 Nov. 7];26(3):e-20912457. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12457

Ojeda L, Lozano G, Quintero M, Whitty K, Smith C. Generación de residuos sólidos domiciliarios por periodo estacional: el caso de una ciudad mexicana. In: I Simposio Iberoamericano de Ingeniería de Residuos Castellón. 2008.

Kaza S, Yao L, Bhada-Tata P, van Woerden F. What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications; 2018. DOI: https://doi.org/10.1596/978-1-4648-1329-0

Sáez A, Urdaneta JA. Manejo de residuos sólidos en América Latina y el Caribe. Omnia. 2014;20(3):121–35.

Hoornweg D, Bhada-Tata P. What a waste: a global review of solid waste management. 2012;

Costa AM, Alfaia RG de SM, Campos JC. Landfill leachate treatment in Brazil–An overview. J Environ Manage. 2019;232:110–6. DOI: https://doi.org/10.1016/j.jenvman.2018.11.006

Pap S, Šolević Knudsen T, Radonić J, Maletić S, Igić SM, Turk Sekulić M. Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water. J Clean Prod [Internet]. 2017 Sep [cited 2017 Aug 23];162:958–72. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0959652617312532 DOI: https://doi.org/10.1016/j.jclepro.2017.06.083

Empresas Varias de Medellín. Informe de caracterización del agua a la entrada y salida de la planta de tratamiento en el relleno sanitario La Pradera, ubicado en el municipio de Don Matias- Antioquia. Medellín; 2016.

Braham JE, Bressani R. Pulpa de café: composición, tecnología y utilización. CIID, Ottawa, ON, CA; 1978.

Elías LG. Composición Química de la Pulpa de café y otros Subproductos. Centro Internacional de Investigaciones para el Desarrollo. 1978. 19–29 p.

Gladis Blandón-Castaño; María Teresa Dávila-Arias; Nelson Rodríguez-Valencia. Caracterización microbiológica y físico-química de la pulpa de café sola y con mucílago, en proceso de lombricompostaje. Cenicafé. 1999;50(1):5–23.

Valencia U de. Apuntes de química física avanzada. Superficies sólidas: adsorción y catálisis heterógenea [Internet]. [cited 2016 Mar 29]. Available from: http://www.uv.es/tunon/pdf_doc/Superficies_Solidas_A.pdf

Kırbıyık Ç, Kılıç M, Çepelioğullar Ö, Pütün AE. Use of sesame stalk biomass for the removal of Ni (II) and Zn (II) from aqueous solutions. Water science and technology. 2012;66(2):231–8. DOI: https://doi.org/10.2166/wst.2012.160

Ali RM, Hamad HA, Hussein MM, Malash GF. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng [Internet]. 2016;91:317–32. Available from: http://www.sciencedirect.com/science/article/pii/S0925857416301641 DOI: https://doi.org/10.1016/j.ecoleng.2016.03.015

Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J Hazard Mater [Internet]. 2010;184(1):126–34. Available from: http://www.sciencedirect.com/science/article/pii/S0304389410010307 DOI: https://doi.org/10.1016/j.jhazmat.2010.08.014

Pulido Gutiérrez H, de la Vara Salazar R. Diseño de experimentos : principios estadísticos para el diseño y análisis de investigaciones. 2nd ed. McGraw-Hill, editor. 2012.

Bustamante-Alcántara E. Adsorción de metales pesados en resiudos de café modificados químicamente [Internet]. Universidad Autónoma de Nuevo León, México. Tesis doctoral; 2011. Available from: http://eprints.uanl.mx/2323/1/1080223849.pdf

Dávila-Guzmán NE, de Jesús Cerino-Córdova F, Soto-Regalado E, Rangel-Mendez JR, Díaz-Flores PE, Garza-Gonzalez MT, et al. Copper Biosorption by Spent Coffee Ground: Equilibrium, Kinetics, and Mechanism. Clean (Weinh) [Internet]. 2013;41(6):557–64. Available from: http://dx.doi.org/10.1002/clen.201200109 DOI: https://doi.org/10.1002/clen.201200109

Cubides Guerrero P, Ramírez Franco JH. Adsorción de Cr VI sobre residuos de café. Revista Mutis [Internet]. 2014;4(2):18–25. Available from: http://revistas.utadeo.edu.co/index.php/mutis/article/view/953/992 DOI: https://doi.org/10.21789/22561498.953

Velásquez J. J, Quintana G, Gómez C, Echavarría Y. Adsorción de NI(II) en carbón activado de cascarilla de café. Revista Investigaciones Aplicadas [Internet]. 2008;2(1):1–6. Available from: https://revistas.upb.edu.co/index.php/investigacionesaplicadas/article/view/142/116

Hernández Rodiguez M, Yperman J, Carleer R, Maggen J, Dadi D, Gryglewicz G, et al. Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon. J Environ Chem Eng [Internet]. 2018;6(1):1161–70. Available from: http://www.sciencedirect.com/science/article/pii/S221334371730684X DOI: https://doi.org/10.1016/j.jece.2017.12.045

Alhogbi BG. Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solutions. Sustain Chem Pharm [Internet]. 2017;6:21–5. Available from: http://www.sciencedirect.com/science/article/pii/S2352554117300323 DOI: https://doi.org/10.1016/j.scp.2017.06.004

Edathil AA, Shittu I, Hisham Zain J, Banat F, Haija MA. Novel magnetic coffee waste nanocomposite as effective bioadsorbent for Pb(II) removal from aqueous solutions. J Environ Chem Eng [Internet]. 2018;6(2):2390–400. Available from: http://www.sciencedirect.com/science/article/pii/S2213343718301623 DOI: https://doi.org/10.1016/j.jece.2018.03.041

Naga Babu A, Reddy DS, Kumar GS, Ravindhranath K, Krishna Mohan G v. Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent. J Environ Manage [Internet]. 2018;218:602–12. Available from: http://www.sciencedirect.com/science/article/pii/S0301479718304791 DOI: https://doi.org/10.1016/j.jenvman.2018.04.091

Escudero C, Gabaldón C, Marzal P, Villaescusa I. Effect of EDTA on divalent metal adsorption onto grape stalk and exhausted coffee wastes. J Hazard Mater [Internet]. 2008;152(2):476–85. Available from: http://www.sciencedirect.com/science/article/pii/S0304389407010047 DOI: https://doi.org/10.1016/j.jhazmat.2007.07.013

Boonamnuayvitaya V, Chaiya C, Tanthapanichakoon W, Jarudilokkul S. Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Sep Purif Technol [Internet]. 2004;35(1):11–22. Available from: http://www.sciencedirect.com/science/article/pii/S1383586603001102 DOI: https://doi.org/10.1016/S1383-5866(03)00110-2

Gomez-Gonzalez R, Cerino-Córdova FJ, Garcia-León AM, Soto-Regalado E, Davila-Guzman NE, Salazar-Rabago JJ. Lead biosorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN. J Taiwan Inst Chem Eng [Internet]. 2016;68:201–10. Available from: http://www.sciencedirect.com/science/article/pii/S1876107016303145 DOI: https://doi.org/10.1016/j.jtice.2016.08.038

Utomo HD, Hunter KA. Adsorption of heavy metals by exhausted coffee grounds as a potential treatment method for waste waters. e-Journal of Surface Science and Nanotechnology. 2006;4:504–6. DOI: https://doi.org/10.1380/ejssnt.2006.504

Kaikake K, Hoaki K, Sunada H, Dhakal RP, Baba Y. Removal characteristics of metal ions using degreased coffee beans: Adsorption equilibrium of cadmium (II). Bioresour Technol. 2007;98(15):2787–91. DOI: https://doi.org/10.1016/j.biortech.2006.02.040

Boudrahem F, Aissani-Benissad F, Aït-Amar H. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J Environ Manage [Internet]. 2009;90(10):3031–9. Available from: http://www.sciencedirect.com/science/article/pii/S0301479709001108 DOI: https://doi.org/10.1016/j.jenvman.2009.04.005

Ahsan MdA, Jabbari V, Islam MdT, Kim H, Hernandez-Viezcas JA, Lin Y, et al. Green synthesis of a highly efficient biosorbent for organic, pharmaceutical, and heavy metal pollutants removal: Engineering surface chemistry of polymeric biomass of spent coffee waste. Journal of Water Process Engineering [Internet]. 2018;25:309–19. Available from: http://www.sciencedirect.com/science/article/pii/S2214714418303635 DOI: https://doi.org/10.1016/j.jwpe.2018.08.005

Bodek I, Lyman WJ, Reehl WF, Rosenblatt DH. Environmental inorganic chemistry: properties, processes, and estimation methods. Pergamon press New York:; 1988.

Utomo HD, Hunter KA. Adsorption of Divalent Copper, Zinc, Cadmium and Lead Ions from Aqueous Solution by Waste Tea and Coffee Adsorbents. Environ Technol [Internet]. 2006 Jan 1;27(1):25–32. Available from: https://doi.org/10.1080/09593332708618619 DOI: https://doi.org/10.1080/09593332708618619

Tokimoto T, Kawasaki N, Nakamura T, Akutagawa J, Tanada S. Removal of lead ions in drinking water by coffee grounds as vegetable biomass. J Colloid Interface Sci. 2005;281(1):56–61. DOI: https://doi.org/10.1016/j.jcis.2004.08.083

Impellitteri CA, Allen HE, Lagos G, McLaughlin MJ. Removal of soluble Cu and Pb by the automatic drip coffee brewing process: Application to risk assessment. Human and Ecological Risk Assessment: An International Journal [Internet]. 2000 Apr 1;6(2):313–22. Available from: https://doi.org/10.1080/10807030009380065 DOI: https://doi.org/10.1080/10807030009380065

Guo F, Li X, Liu Y, Peng K, Guo C, Rao Z. Catalytic cracking of biomass pyrolysis tar over char-supported catalysts. Energy Convers Manag [Internet]. 2018;167:81–90. Available from: http://www.sciencedirect.com/science/article/pii/S0196890418304424 DOI: https://doi.org/10.1016/j.enconman.2018.04.094

Valderrama Rios ML, González AM, Lora EES, Almazán del Olmo OA. Reduction of tar generated during biomass gasification: A review. Biomass Bioenergy [Internet]. 2018;108:345–70. Available from: http://www.sciencedirect.com/science/article/pii/S0961953417304026 DOI: https://doi.org/10.1016/j.biombioe.2017.12.002

Valencia U de. Apuntes de química física avanzada. Superficies sólidas: adsorción y catálisis heterógenea [Internet]. 2016 [cited 2018 Aug 31]. Available from: https://www.uv.es/tunon/pdf_doc/Superficies_Solidas_A.pdf

Elaigwu SE, Rocher V, Kyriakou G, Greenway GM. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell. Journal of Industrial and Engineering Chemistry [Internet]. 2014;20(5):3467–73. Available from: http://www.sciencedirect.com/science/article/pii/S1226086X13006680 DOI: https://doi.org/10.1016/j.jiec.2013.12.036

Cruz Olivares J, Barrera Diaz CE. Proceso dinámico para la biosorción de Pb (II) de soluciones acuosas utilizando una columna empacada con cáscara de pimienta(Pimenta dioica L. Merrill). 2013;

Harinath Y, Reddy DHK, Sharma LS, Seshaiah K. Development of hyperbranched polymer encapsulated magnetic adsorbent (Fe3O4@SiO2–NH2-PAA) and its application for decontamination of heavy metal ions. J Environ Chem Eng [Internet]. 2017;5(5):4994–5001. Available from: http://www.sciencedirect.com/science/article/pii/S2213343717304694 DOI: https://doi.org/10.1016/j.jece.2017.09.031

Lee SY, Choi HJ. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution. J Environ Manage [Internet]. 2018;209:382–92. Available from: http://www.sciencedirect.com/science/article/pii/S0301479717312689 DOI: https://doi.org/10.1016/j.jenvman.2017.12.080

Liu J, Hu C, Huang Q. Adsorption of Cu2+, Pb2+, and Cd2+ onto oiltea shell from water. Bioresour Technol [Internet]. 2018; Available from: http://www.sciencedirect.com/science/article/pii/S0960852418312938 DOI: https://doi.org/10.1016/j.biortech.2018.09.040

Received 2022-09-08
Accepted 2024-08-21
Published 2024-10-07