Main Article Content

Authors




Due to its chemical composition, gilsonite of natural origin that contains the four main fractions (saturated, asphaltenes, resins and aromatics compounds) and it is characterized by having a great amount of carbon element (>84%) and minimum sulfur content (≪ 0.3%) and other important properties which determine multiple current applications (energy, inks and paints, oil well drilling, gilsocarbon for nuclear reactors, pneumatics rubber additive, petroleum emulsion, road paving, metal foundry, filter to retain cyanide ion, toluene and so on) and promising for the future, that is covered in this article. It was found that gilsonite has the proper amount of carbon to graphitize and subsequently convert to graphene, which opens possibilities for applications in graphene oxide-based materials and photovoltaic cells. Asphaltenes extracted from crude oil are very similar with respect to the structure and composition of gilsonite, which makes the latter a cheaper alternative to develop similar applications (graphene coating on military vehicles, creation of flexible screens and so on). In Colombia there is exploration of gilsonite, but its use is traditional and limited as an asphalt binding agent to improve the mechanical efficiency of pavements. Due to its structure, gilsonite can also be used in the removal of cyanide ion as its main application in the decontamination of rivers and aquifers affected by mining.




Henry Lozano Pereira, Universidad del Valle, Cali, Colombia

I am a scientist chromatografist-Mass spectrometist that is passionate about developing methodologies for the preparation and analysis of samples of flavors and fragrances. My favorite technique is the gas chromatography-mass spectrometry because I think that mass spectra of such as puzzle, which i must assemble. One of the favorite techniques of extraction is the SPME because that lets you do extractions very clean and easy (without solvents), in any matrix.

1.
Lozano Pereira H, Afanasjeva N. Gilsonite: An organic mineral with special physical-chemical properties, current uses and future prospects applications. inycomp [Internet]. 2023 Jan. 15 [cited 2024 Dec. 23];25(1):e-30312302. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12302

(1) Boden T. Independent gilsonite vein, Uintah County. Geosites [Internet]. 2019; 1:1–8. Disponible en: http://dx.doi.org/10.31711/geosites.v1i1.78

(2) Zista Group. What is Natural Bitumen? [Internet]. Zista Group. 2020 [citado el 5 de marzo de 2021]. Disponible en: www.zistagilsonite.com

(3) Barrera OJR. Venta de asfaltita tipo gilsonita [Internet]. Ingeomining Colombia. 2016 [citado el 15 de enero de 2022]. Disponible en: http://ingeominingcolombia.blogspot.com/2016/

(4) Kim N. Chemical characterization of Gilsonite bitumen. J Pet Environ Biotechnol [Internet]. 2014;05(05). Disponible en: http://dx.doi.org/10.4172/2157-7463.1000193

(5) Zheng F, Zhu G-Y, Chen Z-Q, Zhao Q-L, Shi Q. Molecular composition of vanadyl porphyrins in the gilsonite. J Fuel Chem Technol [Internet]. 2020;48(5):562–7. Disponible en: http://dx.doi.org/10.1016/s1872-5813(20)30023-2

(6) Afanasjeva N, González-Córdoba A, Palencia M. Mechanistic approach to thermal production of new materials from asphaltenes of Castilla crude oil. Processes (Basel) [Internet]. 2020; 8(12):1644. Disponible en: http://dx.doi.org/10.3390/pr8121644

(7) Subirana M, Sheu EY, editores. Asphaltenes: Fundamentals and Applications. Nueva York, NY, Estados Unidos de América: Springer; 2013:192-5.

(8) Li K, Vasiliu M, McAlpin CR, Yang Y, Dixon DA, Voorhees KJ, et al. Further insights into the structure and chemistry of the Gilsonite asphaltene from a combined theoretical and experimental approach. Fuel (Lond) [Internet]. 2015; 157:16–20. Disponible en: http://dx.doi.org/10.1016/j.fuel.2015.04.029

(9) Gill JP, Evershed RP, Chicarelli MI, Wolff GA, Maxwell JR, Eglinton G. Computerised capillary gas chromatographic mass spectrometric studies of the petroporphyrins of the gilsonite bitumen (Eocene, U.S.A.). J Chromatogr A [Internet]. 1985; b350:37–62. Disponible en: http://dx.doi.org/10.1016/s0021-9673(01)93506-x

(10) Gordadze G, Kerimov V, Giruts M, Poshibaeva A, Koshelev V. Genesis of the asphaltite of the Ivanovskoe field in the Orenburg region, Russia. Fuel (Lond) [Internet]. 2018; 216:835–42. Disponible en: http://dx.doi.org/10.1016/j.fuel.2017.11.146.

(11) Hays WW, Nuttli OW, Scharon L. Mapping Gilsonite veins with the electrical resistivity method. Geophysics [Internet]. 1967;32(2):302–10. Disponible en: http://dx.doi.org/10.1190/1.1439869.

(12) Goyes-Peñafiel YP, Khurama-Velasquez S, Nikolaevich-Kovin O. Gilsonite exploration by using electrical resistivity tomography with multi-electrode gradient array: Acase study in Rionegro (Colombia). Rev UIS ing [Internet]. 2020; 19(2):77–83. Disponible en: http://dx.doi.org/10.18273/revuin.v19n2-2020008.

(13) Antipenko VR, Fedyaeva ON, Grinko AA, Vostrikov AA. Structural parameters of resins and asphaltenes of natural asphaltite and products of its conversion in supercritical water. En: Proceedings of the international conference on physical mesomechanics materials with multilevel hierarchical structure and intelligent manufacturing technology. AIP Publishing; c2020.

(14) Villamil R, Suarez VH. Análisis del comportamiento de concretos asfálticos en caliente modificados con polvo de roca asfáltica. Instituto Nacional de Vías (INVIAS); c2016.

(15) Barrero D, Pardo A, Vargas C, Martinez J F, Colombian sedimentary basins: Nomenclature, boundaries and petroleum geology, a new proposal. Agencia nacional de hidrocarburos-A.N.H-; c2007; p. 27.

(16) Giladmin. What is gilsonite.. [Internet]. Gilsonite.pro. 2020 [citado el 15 de enero de 2022]. Disponible en: http://gilsonite.pro.

(17) ITC’s mission is to supporting the internationalization of small and medium-sized enterprises [Internet]. ITC. [ citado el 29 de marzo de 2022]. Disponible en: https://intracen.org/.

(18) Quintana HAR, Noguera JAH, Bonells CFU. Behavior of Gilsonite-modified hot mix asphalt by wet and dry processes. J Mater Civ Eng [Internet]. 2016;28(2):04015114. Disponible en: http://dx.doi.org/10.1061/(asce)mt.1943-5533.0001339

(19) Bahrami A, Kazemi F, Ghorbani Y. Effect of different reagent regime on the kinetic model and recovery in gilsonite flotation. J Mater Res Technol [Internet]. 2019;8(5):4498–509. Disponible en: http://dx.doi.org/10.1016/j.jmrt.2019.07.063.

(20) Aydin I, Fidan C, Kavak O, Erek F, Aydin F. Determination of selenium and nickel in asphaltite from Milli (sirnak) deposit in SE Anatolia of turkey. IOP Conf Ser Earth Environ Sci [Internet]. 2017; 95:042033. Disponible en: http://dx.doi.org/10.1088/1755-1315/95/4/042033.

(21) Gopinath P, Naveen Kumar C. Performance evaluation of HMAC mixes produced with gilsonite modified bitumen for heavily trafficked roads. Mater Today [Internet]. 2021; 43:941–6. Disponible en: http://dx.doi.org/10.1016/j.matpr.2020.07.224

(22) Asphalt [Internet]. American Gilsonite Company. 2018 [citado el 24 de marzo de 2022]. Disponible en: https://www.americangilsonite.com/end-markets/industrials/asphalt/.

(23) SynAsphalt [Internet]. BPN International LLC. 2016 [citado el 24 de marzo de 2022]. Disponible en: https://bpn-international.com/synthetic-asphalt/

(24) Sobhi S, Yousefi A, Behnood A. The effects of Gilsonite and Sasobit on the mechanical properties and durability of asphalt mixtures. Constr Build Mater [Internet]. 2020; 238(117676):117676. Disponible en: http://dx.doi.org/10.1016/j.conbuildmat.2019.117676

(25) Themeli A, Chailleux E, Farcas F, Chazallon C, Migault B, Buisson N. Molecular structure evolution of asphaltite-modified bitumens during ageing; Comparisons with equivalent petroleum bitumens. Int j pavement res technol [Internet].2017; 10(1):75–83. Disponible en: http://dx.doi.org/10.1016/j.ijprt.2017.01.003.

(26) Yamac O, Yilmaz M, Kok BV. Effects of the Combined Use of Styrene-Butadiene-Styrene and Gilsonite in Bitumen Modification on the Stiffness and Thermal Sensitivity of Bitumens. Turkish Journal of Science & Tecnology. c2018;77–85.

(27) Zhou J, Li J, Liu G, Yang T, Zhao Y. Recycling aged asphalt using hard asphalt binder for hot-mixing recycled asphalt mixture. Appl Sci (Basel) [Internet]. 2021; 11(12):5698. Disponible en: http://dx.doi.org/10.3390/app11125698

(28) ت. Gilsonite usage [Internet]. RAHA Gilsonite Co. 2017 [citado el 5 de junio de 2022]. Disponible en: http://gilsoniteco.com/2017/05/02/gilsonite-usage/

(29) Helms JR, Kong X, Salmon E, Hatcher PG, Schmidt-Rohr K, Mao J. Structural characterization of gilsonite bitumen by advanced nuclear magnetic resonance spectroscopy and ultrahigh resolution mass spectrometry revealing pyrrolic and aromatic rings substituted with aliphatic chains. Org Geochem [Internet]. 2012;44:21–36. Disponible en: http://dx.doi.org/10.1016/j.orggeochem.2011.12.001

(30) Saffarian DA, Vahid A, Baniyaghoob S, Saber-Therani M. Heat-treated Gilsonite as an efficient natural material for removing toluene: A Box-Behnken experimental design approach. Scientia Ir. c2021;28(3):1353–65.

(31) Güney A, Burat F, Kayaduman M, Kangal O. Demineralization of asphaltite using free jet flotation: Demıneralızatıon of Asphaltite. Asia-Pac J Chem Eng [Internet]. 2017;12(1):42–9. Disponible en: http://dx.doi.org/10.1002/apj.2052 P. 42-49.

(32) Bilgin O. Cleaning of fine asphaltite by oil agglomeration process. Energy Sources Recovery Util Environ Eff [Internet]. 2020;1–13. Disponible en: http://dx.doi.org/10.1080/15567036.2020.1810175

(33) Gilsonite supplier and powder factory to pulverize up to 600 mesh [Internet]. Gilsonite-bitumen.com. [citado el 10 de mayo de 2022]. Disponible en: https://gilsonite-bitumen.com/

(34) Asia Gilsonite [Internet]. asiagilsonite. 2021 [citado el 29 de marzo de 2022]. Disponible en: https://asiagilsonite.com/

(35) Pakdaman E, Osfouri S, Azin R, Niknam K, Roohi A. Synthesis and characterization of hydrophilic gilsonite fine particles for improving water-based drilling mud properties. J Dispers Sci Technol [Internet]. 2020;41(11):1633–42. Disponible en: http://dx.doi.org/10.1080/01932691.2019.1634582

(36) Marsden BJ, Hall GN, Jones AN. Graphite in Gas-Cooled Reactors. En: Comprehensive Nuclear Materials. Elsevier; 2020. p. 357–421.

(37) Shen K, Yu S, Kang F. The microstructure and texture of Gilsocarbon graphite. Carbon N Y [Internet]. 2019;153:428–37. Disponible en: http://dx.doi.org/10.1016/j.carbon.2019.06.108

(38) Vélez JS, Velásquez S, Giraldo D. Mechanical and rheometric properties of gilsonite/carbon black/natural rubber compounds cured using conventional and efficient vulcanization systems. Polym Test [Internet]. 2016;56:1–9. Disponible en: http://dx.doi.org/10.1016/j.polymertesting.2016.09.005.

(39) Velayati A, Nouri A. Formulating a model emulsion replicating SAGD in-situ emulsions. J Pet Sci Eng [Internet]. 2022;208(109528):109528. Disponible en: http://dx.doi.org/10.1016/j.petrol.2021.109528

(40) Velayati A, Nouri A. Role of asphaltene in stability of water-in-oil model emulsions: The effects of oil composition and size of the aggregates and droplets. Energy Fuels [Internet]. 2021;35(7):5941–54. Disponible en: http://dx.doi.org/10.1021/acs.energyfuels.1c00183

(41) Wang T, Villegas Salvatierra R, Jalilov AS, Tian J, Tour JM. Ultrafast charging high-capacity asphalt-lithium metal batteries. ACS Nano [Internet]. 2017;11(11):10761–7. Disponible en: http://dx.doi.org/10.1021/acsnano.7b05874.

(42) Park J-U, Nam S, Lee M-S, Lieber CM. Synthesis of monolithic graphene-graphite integrated electronics. Nat Mater [Internet]. 2011;11(2):120–5. Disponible en: http://dx.doi.org/10.1038/nmat3169

(43) Serna J, Sanchez P, Álvarez I. IV Congreso Nacional de i+d en Defensa y Seguridad ACTAS. Centro Universitario de la Defensa de San Javier; 2016. P. 497 – 504.

(44) Benvidi A, Nikmanesh M, Tezerjani MD. Graphene Oxide/Chitosan Based Impedimetric Aptasensor Along with an Ester Linker for the Detection of Tetracycline. Journal of Nanostr. enero de 2022;12(1):213–23.

(45) Koşan İ, Ustunisik G, Önal M, Sarıkaya Y, Bozkurt PA. Irreversible ammonia adsorption on asphaltite bottom ash: A thermodynamic approach. Colloids Surf A Physicochem Eng Asp [Internet]. 2021;626(126933):126933. Disponible en: http://dx.doi.org/10.1016/j.colsurfa.2021.126933

(46) Jalilov AS, Li Y, Tian J, Tour JM. Ultra-high surface area activated porous asphalt for CO2 Capture through competitive adsorption at high pressures. Adv Energy Mater [Internet]. 2017;7(1):1600693. Disponible en: http://dx.doi.org/10.1002/aenm.201600693

(47) Pahlevani S, Jadidi K, Abtahi SM, Hejazi SM, Karakouzian M. Application of Gilsonite-modified slag as a subballast layer with recommendations for optimum content of Gilsonite. J Mater Civ Eng [Internet]. 2021;33(4):04021049. Disponible en: http://dx.doi.org/10.1061/(asce)mt.1943-5533.0003668

(48) Lee T, Benson CH. Sorption and degradation of alachlor and metolachlor in ground water using green sands. J. Environ Qual [Internet]. 2004;33(5):1682–93. Disponible en: http://dx.doi.org/10.2134/jeq2004.1682

(49) Mishra D, Zhou R, Hassan MM, Hu J, Gates I, Mahinpey N, et al. Bitumen and asphaltene derived nanoporous carbon and nickel oxide/carbon composites for supercapacitor electrodes. Sci Rep [Internet]. 2022;12(1):4095. Disponible en: http://dx.doi.org/10.1038/s41598-022-08159-3

(50) Saad S, Zeraati AS, Roy S, Shahriar Rahman Saadi MA, Radović JR, Rajeev A, et al. Transformation of petroleum asphaltenes to carbon fibers. Carbon N Y [Internet]. 2022;190:92–103. Disponible en: http://dx.doi.org/10.1016/j.carbon.2022.01.011

(51) Afanasjeva N, Lizcano-Valbuena WH, Aristizabal N, Mañozca I. Electrodeposición de vanadio y níquel de los asfaltenos de crudos pesados. Ing Compet [Internet]. 2015;17(2):9–17. Disponible en: http://dx.doi.org/10.25100/iyc.v17i2.2184

(52) Chemical Mine World LTD. Especificación física de gilsonita [Internet]. Chemical Mine World LTD. c2017 [citado el 24 de marzo de 2022]. Disponible en: http://www.gilsonite.org/en/