Contenido principal del artículo

La eliminación de colorantes sintéticos del medio acuoso representa un gran desafío ambiental debido a su compleja estructura química y baja biodegradabilidad. En esta investigación, se evaluó el proceso Fenton para el tratamiento de un agua coloreada con azul de metileno. En primer lugar, la aplicación del método Fenton homogéneo permitió seleccionar una dosis óptima de peróxido de hidrógeno de 2.94 mM (100 mg/L) y una relación óptima de Fe(II):H2O2 de 1:10, a partir de las cuales se obtuvo una eliminación de 99.9% del colorante. Posteriormente, se desarrolló el proceso Fenton heterogéneo usando como catalizador tres tipos de calamina provenientes de procesos de transformación del acero. Con la aplicación del proceso de Fenton heterogéneo y empleando la calamina tipo 2 (alto carbono) se reportó una degradación del colorante de 99.8%, una eliminación de la DQO de 86.3% y de 54.8% de COT, con una concentración óptima de 15 g/L de calamina, 2.94 milimolar (100mg/L) de peróxido de hidrógeno, con pH 3 y con 6 horas de reacción. De acuerdo con los resultados obtenidos, la utilización de la calamina como catalizador del proceso Fenton es una alternativa al uso de desechos en la industria del acero. También se demostró que el modelo cinético de primer orden se ajusta apropiadamente a la degradación de azul de metileno mediante los procesos de Fenton homogéneo y Fenton heterogéneo.

1.
Acero Nitola JA, Avendaño A, Bermúdez Ángela. Evaluación del proceso Fenton para el tratamiento de un agua sintética coloreada empleando calamina. inycomp [Internet]. 30 de diciembre de 2022 [citado 27 de enero de 2023];25(1). Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12105

(1) Hassaan M. Advanced oxidation process of some organic pollutants in fresh and seawater. [tesis doctoral en internet]. Egipto: Port Said University; 2016 [citada 16 feb 2022]. 180 p.

(2) Ayele A, Getachew D, Kamaraj M, Suresh A. Phycoremediation of Synthetic Dyes: An Effective and Eco-Friendly Algal Technology for the Dye Abatement. J chem [internet]. 2021 [citado 16 feb 2022]; 1-14. Disponible en: https://doi.org/10.1155/2021/9923643

(3) Berradi M, Hsissou R, Khudhair M, Assouag M, El Bachiri A, El Harfi A. Textile finishing dyes and their impact on aquatic environs. Heliyon [internet]. 2019 nov [citado 16 feb 2022]; 5(11):1-11. Disponible en: https://doi.org/10.1016/j.heliyon.2019.e02711

(4) Hossain L, Sarker S, Khan S. Evaluation of Present and Future Wastewater Impacts of Textile Dyeing Industries in Bangladesh. Environ Develop. [internet]. 2018 mar [citado 6 nov 2021]; 26:23-33. Disponible en: https://doi.org/10.1016/j.envdev.2018.03.005

(5) Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. App Microbiol Biotechnol. [internet]. 2001 [citado 6 nov 2021]; 56(1-2):69-80. Disponible en http://doi.org/10.1007/s002530100686

(6) Environmental Chemicals Data and Information Network, Commission of the European Communities; 1993, Environmental Institute, Ispra, Italy.

(7) Feng J, Cerniglia, C, Chen C. Toxicological significance of azo dye metabolism by human intestinal microbiota. Front Biosci (Elite Ed). 2012 Jan 1; 4:568-86.

(8) Monash P, Pugazhenthi G. Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption. [internet].2009 feb [citado 6 nov 2021];15:390–405. Disponible en: https://doi.org/10.1007/s10450-009-9156-y

(9) Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ Int. [internet]. 2004 sep [citado 6 nov 2021]; 30:953–71. Disponible en: https://doi.org/10.1016/j.envint.2004.02.001

(10) Pang Y, Abdullah A. Current Status of Textile Industry Wastewater Management and Research Progress in Malaysia: A Review. Clean. [internet]. 2013 aug [citado 6 nov 2021]; 41(8):751–64. Disponible en: https://doi.org/10.1002/clen.201000318

(11) Mohan N, Balasubramanian N, Basha CA. Electrochemical oxidation of textile wastewater and its reuse. J Hazard Mater. [internet]. 2007 aug [citado 6 nov 2021]; 147:644–51. Disponible en: https://doi.org/10.1016/j.jhazmat.2007.01.063

(12) Zaroual Z, Azzi M, Saib N, Chainet E. Contribution to the study of electro-coagulation mechanism in basic textile effluent. J Hazard Mater. [internet]. 2006 [citado 22 nov 2021]; 131:73–8. Disponible en: https://doi.org/10.1016/j.jhazmat.2005.09.021

(13) Dükkancı M, Gündüz G, Yılmaz S, Prihod’ko R. Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. J Hazard Mater. [internet]. 2010 [citado 22 nov 2021]; 181: 343-50. Disponible en: https://doi.org/10.1016/j.jhazmat.2010.05.016

(14) Nidheesh P, Gandhimathi R. Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination. [internet]. 2012 aug [citado 22 nov 2021]; 299:1–15. Disponible en: https://doi.org/10.1016/j.desal.2012.05.011

(15) Turbay E. Efficient Operation of photo-Fenton Process for the Treatment of Emerging Contaminants in Water Solutions [tesis doctoral en internet]. Barcelona: Universitat Politècnica de Catalunya; 2013 [citada 22 nov 2021]. 207 p. Disponible en: http://hdl.handle.net/10803/134805

(16) Martín M, López F, Torralba J. Production of sponge iron powder by reduction of rolling mill scale. Ironmak Steelmak. [internet]. 2012 mar [citado 16 feb 2022]; 39(3): 155-62. Disponible en: https://doi.or g/10.1179/1743281211Y.0000000078

(17) Khaerudini D, Chanif I, Insiyanda D, Destyorini F, Alva S, Pramono A. Preparation and Characterization of Mill Scale Industrial Waste Reduced by Biomass‑Based Carbon. J Sustain Metall [internet]. 2019 aug [citado 16 feb 2022]; 5: 510–18. Disponible en: https://doi.org/10.1007/s40831-019-00241-x

(18) Oladipo E. Oxidative Degradation of Methylene Blue Using Fenton Reagent. IJSER. [internet]. 2015 nov [citado 21 nov 2021]; 6(11):984-96. Disponible en: https://www.researchgate.net/publication /319629691_Oxidative_Degradation_of_Methylene_Blue_Using_Fenton_Reagent

(19) Mousavi S, Vasseghian Y, Bahadori A. Evaluate the Performance of Fenton Process for the Removal of Methylene Blue from Aqueous Solution: Experimental, Neural Network Modeling and Optimization. Environ Prog Sustain. [internet].2018. [citado 21 nov 2021]; 39(2):1-7. Disponible en: https://doi.org/10.1002/ep.13126

(20) Neamtu M, Yediler A, Siminiceanu I, Kettrup A. Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. J Photochem and Photobiol A: Chem. [internet]. 2003 may [citado 21 nov 2021]; 87-93. Disponible en: https://doi.org/10.1016/S1010-6030(03)00270-3

(21) Nasruddin M, Fahmi M, Lun Y, Abidin Z, Noer Z. Influence of pH and FeSO4 to H2O2 Ratio in Degradation of p-Cresol by Fenton’s Reagent. AIP Confer Proceed. [internet]. 2020 jun [citado 21 nov 2021]; 2221(1): 1-6. Disponible en: https://doi.org/10.1063/5.0003179

(22) Dutta K, Mukhopadhyay S, Bhattacharjee S, Chaudhuri B. Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater. [internet]. 2001 [citado 21 nov 2021]; 84(1):57-71. Disponible en: https://doi.org/10.1016/S0304-3894(01)00202-3

(23) Giwa A, Bello I, Olabintan A, Bello O, Saleh T. Kinetic and thermodynamic studies of Fenton oxidative decolorization of methylene blue. Heliyon. [internet]. 2020 aug [citado 21 nov 2021]; 6(8): 1-7. Disponible en: https://doi.org/10.1016/j.heliyon.2020.e04454

(24) Xu L, Wang J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J Hazard Mater. [internet]. 2011 feb [citado 21 nov 2021]; 186(1):256-64. Disponible en: https://doi.org/10.1016/j.jhazmat.2010.10.116

(25) Melgoza D, Peralta J, Hernández A. Comparative efficiencies of the decolourisation of Methylene Blue using Fenton's and Photo-Fenton's reactions. Photochem and Photobiol Scien[internet]. 2009 [citado 21 nov 2021]; 8:596-9. Disponible en: https://doi.org/10.1039/b817287k