Main Article Content

Authors

This paper shows the implementation of a manipulation method based on encephalographic signals for the movement of a robotic endoscope holder in a surgical simulator. This simulator consists of three robots, one endoscope holder robot (Hibou robot) and two surgical robots (Lapbot and PA10 robot). The simulation allows performing a cholecystectomy operation, where the removal of a gallbladder is performed using surgical robots while the endoscope holder robot transmits images from inside the patient's abdomen. For the manipulation of the endoscope holder robot in order to focus on different parts of the abdomen, a joystick device is used, but also a natural interface, which allows the user, after training, to move the camera inside the patient's abdomen by means of his thoughts. Tests performed with several users show promising results regarding the manipulation of objects by thought training, and in particular the manipulation of the endoscope camera in laparoscopy operations, which would allow a better management of the whole operation by the surgeon.

1.
Vivas OA, Pipicano LA, Rojas AF. Manipulation of a robotic endoscope holder with encephalographic signals in a surgical simulator. inycomp [Internet]. 2023 Jan. 15 [cited 2024 Nov. 22];25(1):e-21011961. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11961

(1) Özin M, Vatansever E, Eray T, Koç I, Sümer B. Analytical and experimental analysis on kinetics of a laparoscopic surgery tool. In: International Conference on Mechatronics Systems and Control Engineering; Kayseri, Turkey. 2017, pp. 20-23. https://doi.org/10.1145/3045714.3045723

(2) Mirota D, Ishii M, Hager G. Vision-based navigation in image-guided interventions. An Rev of Biom Eng, 2011 aug; 13(2):297-319. https://doi.org/10.1146/annurev-bioeng-071910-124757

(3) Bills N, Oleynikov D. Robotic surgery for the general surgeon. New York: Nova Science Publishers, Inc; 2014.

(4) Qian K, Bai J, Yang X, Pan P, Zhang J. Essential techniques for laparoscopic surgery simulation. Com Anim and Vir W, 2016 jun; 28(2);1724. https://doi.org/10.1002/cav.1724

(5) Fernández C, Guástar H, Vivas A. Diseño y modelado del robot PA-10 virtual para aplicaciones quirúrgicas. Rev Fac Ing, 2016 may; 25(42):21-32. http://dx.doi.org/10.19053/01211129.4627

(6) Intuitive Surgical [Internet]. Sunnyvale, USA; December 2021. Avalaible from: https://www.intuitive.com

(7) CMR Surgical [Internet]. Cambridge, UK: October 2021. Available: https://cmrsurgical.com

(8) Titan Medical [Internet]. Toronto, Canada: May 2021. Available: http://www.titanmedicalinc.com

(9) Applied Dexterity [Internet]. Seattle, USA: January 2021. Available: http://applieddexterity.com

(10) Moreno T, Diseño y construcción de un prototipo de simulador con realidad virtual para cirugía laparoscópica [tesis de pregrado ingeniería mecatrónica, Universidad Nacional Autónoma de México], 2017.

(11) Galindez F, Urbano M. Entrenador quirúrgico físico-virtual para operaciones de laparoscopia [tesis de pregrado de ingeniería electrónica y telecomunicaciones, Universidad del Cauca, Colombia], 2017.

(12) Khan Z, Kamal N, Hameed A, Mahmood A, Zainab R, Sadia B, Mansoor S, Hasan O. SmartSIM - a virtual reality simulator for laparoscopy training using a generic physics engine. Int J of Med Rob and Com Ass Sur, 2016 sept;13(3):e1771. https://doi.org/10.1002/rcs.1771

(13) LapVR Laparoscopic Surgical Simulator [Internet]. Drive Sarasota, USA: July 2018. Available: https://caehealthcare.com/surgical-simulation/lapvr

(14) Surgical Science LapSim [Internet]. Göteborg, Sweden: August 2020. Available: https://surgicalscience.com

(15) LAP-X Laparoscopy simulator [Internet]. Rotterdam, Netherlands: January 2020. Available: https://www.medical-x.com/products/lap_x/

(16) EMARO Endoscope Manipulator Robot [Internet]. Tokyo, Japan: March 2019. Available: https://www.riverfieldinc.com/en/

(17) Medrobotics [Internet]. Taunton, USA: February 2018. Available: https://medrobotics.com

(18) Auris Health [Internet]. Redwood City, USA: January 2019. Available: https://www.aurishealth.com

(19) Zinchenko K, Wu C, Song K. A study on speech recognition control for a surgical robot. IEEE Tran Ind Inf, 2017 apr, 13(2):607-15. https://doi.org/10.1109/TII.2016.2625818

(20) Gomez J, Ceballos A, Prieto F, Redarce T. Mouth gesture and voice command based robot command interface. In: IEEE International Conference on Robotics and Automation; Kobe, Japan. 2009, pp. 333–338. https://doi.org/10.1109/ROBOT.2009.5152858

(21) Kim M, Lee C, Hong N, Kim Y, Kim S. Development of stereo endoscope system with its innovative master interface for continuous surgical operation. Bio Med Eng, 2017 jun; 16(1):1-16. Available: https://doi.org/10.1186/s12938-017-0376-1

(22) Kawai T, Fukunishi M, Nishikawa A, Nishizawa Y, Nakamura T. Hands-free interface for surgical procedures based on foot movement patterns. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Chicago, USA. 2014, pp. 345-348. https://doi.org/10.1109/EMBC.2014.6943600

(23) Cao Y, Miura S, Kobayashi Y, Kawamura K, Sugano S, Fujie M. Pupil variation applied to the eye tracking control of an endoscopic manipulator. IEEE Rob and Aut Lett, 2016 jan; 1(1):531-38. https://doi.org/10.1109/LRA.2016.2521894

(24) Fujii K, Salerno A, Sriskandarajah K, Kwok K, Shetty K, Yang G. Gaze contingent cartesian control of a robotic arm for laparoscopic surgery. IEEE/RSJ International Conference on Intelligent Robots and Systems; Tokyo, Japan. 2013, pp 196-214. https://doi.org/10.1016/j.media.2017.11.011

(25) CtrlLabs [Internet]. New York, USA: January 2020. Available: https://www.ctrl-labs.com

(26) Neuralink [Internet]. San Francisco, USA: February 2020. Available: https://www.neuralink.com

(27) Next-Mind [Internet]. Paris, France: March 2022. Available: https://www.next-mind.com

(28) Correa K, Vivas A. Prótesis de mano virtual movida por señales encefalográficas – EEG. Prospectiva, 2016 jul; 14(2):99-110. https://doi.org/10.15665/rp.v14i2.664

(29) Kasim M, Low C, Ayub M, Zakaria N, Salleh M, Johar K, Hamli H. User-friendly LabVIEW GUI for prosthetic hand control using Emotiv EEG headset. Proc Comp Sci, 2017 dec; 105:276-81. https://doi.org/10.1016/j.procs.2017.01.222

(30) Zaki M, Alquraini A, Sheltami T. Home automation using EMOTIV: Controlling TV by brainwaves. J Ubi Sys and Per Net, 2018 jan; 10(1):27-32. DOI:10.5383/JUSPN.10.01.004

(31) American College of Surgeons, Colecistectomía, extirpación quirúrgica de la vesícula biliar, [Internet]. Chicago, USA: Jun 2018. Available:

https://www.facs.org/~/media/files/education/patient%20ed/colecistectomia.ashx

(32) Vargas H, Vivas A. Manipulación de robot quirúrgico mediante interfaz natural. Rev Mex Ing Biom, 2016 dec; 37(3):287-98. http://dx.doi.org/10.17488/rmib.37.3.2

(33) Emotiv EEG Headset [Internet]. San Francisco, USA: December 2019. Available: https://www.emotiv.com/epoc

(34) ISO 25010 [Internet]. Genève, Switzerland: December 2019. Available: https://iso25000.com/index.php/normas-iso-25000/iso-25010?limit=3&start=3