Contenido principal del artículo

Esta revisión se centra en la técnica conocida por el nombre de cavitación para el tratamiento de aguas residuales. Existen diversas maneras de lograr que un fluido cavite, el centro de atención de este documento son la cavitación hidrodinámica y cavitación acústica. La cavitación ocurre cuando de manera brusca un fluido cambia de fase por variación en la presión de este, las cavidades cuentan con una considerable cantidad de energía que favorece reacciones al interior e interfase de cada burbuja o cavidad que se forma en el seno del líquido, así como también en fluido. Esta técnica de tratamiento resulta favorable toda vez que por sí misma no implica el uso o dosificación de insumos químicos para reducir la concentración de contaminantes en el agua. Las fuentes consultadas señalan que para lograr una mayor efectividad del proceso de cavitación se hace necesario la intensificación del proceso por la implementación simultanea de otras técnicas de tratamiento, entre ellas los procesos de oxidación avanzada, procesos electroquímicos y clarificación del agua. Las combinaciones de cavitación con otras técnicas de tratamiento de aguas residuales han sido objeto de estudio para diferentes contaminantes recalcitrantes logrando resultados muy favorables. Este trabajo hizo énfasis principalmente como caso estudio las aguas residuales de curtiembres.

1.
Garces Polo S, Agudelo Valencia RN, Camargo Vargas G de J, Rojas Molano HF, Arias Sierra S, Agudelo Carrascal IC. Cavitación ultrasónica para el tratamiento de aguas residuales. Una Revisión. inycomp [Internet]. 26 de mayo de 2022 [citado 30 de septiembre de 2022];24(02):26. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11661

Gogate PR, Thanekar PD, Oke AP. Strategies to improve biological oxidation of real wastewater using cavitation based pre-treatment approaches. Ultrason Sonochem [Internet]. 2020;64(February):105016. Available from: https://doi.org/10.1016/j.ultsonch.2020.105016

Cristóvão RO, Botelho CM, Martins RJE, Loureiro JM, Boaventura RAR. Primary treatment optimization of a fish canning wastewater from a Portuguese plant. Water Resour Ind [Internet]. 2014;6:51–63. Available from: http://dx.doi.org/10.1016/j.wri.2014.07.002

Alfonso-Muniozguren P, Hazzwan Bohari M, Sicilia A, Avignone-Rossa C, Bussemaker M, Saroj D, et al. Tertiary treatment of real abattoir wastewater using combined acoustic cavitation and ozonation. Ultrason Sonochem [Internet]. 2020;64(June 2019):104986. Available from: https://doi.org/10.1016/j.ultsonch.2020.104986

Garcia-Segura S, Eiband MMSG, de Melo JV, Martínez-Huitle CA. Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. J Electroanal Chem [Internet]. 2017;801(July):267–99. Available from: http://dx.doi.org/10.1016/j.jelechem.2017.07.047

Liang Y, Zhu H, Bañuelos G, Yan B, Zhou Q, Yu X, et al. Constructed wetlands for saline wastewater treatment: A review. Ecol Eng. 2017;98:275–85.

Fababuj-Roger M, Mendoza-Roca JA, Galiana-Aleixandre M V., Bes-Piá A, Cuartas-Uribe B, Iborra-Clar A. Reuse of tannery wastewaters by combination of ultrafiltration and reverse osmosis after a conventional physical-chemical treatment. Desalination. 2007;204(1-3 SPEC. ISS.):219–26.

Thalmann B, von Gunten U, Kaegi R. Ozonation of municipal wastewater effluent containing metal sulfides and metal complexes: Kinetics and mechanisms. Water Res [Internet]. 2018;134:170–80. Available from: https://doi.org/10.1016/j.watres.2018.01.042

Sivagami K, Sakthivel KP, Nambi IM. Advanced oxidation processes for the treatment of tannery wastewater. J Environ Chem Eng [Internet]. 2016;(October 2016):0–1. Available from: http://dx.doi.org/10.1016/j.jece.2017.06.004

Wang Z, Srivastava V, Ambat I, Safaei Z, Sillanpää M. Degradation of Ibuprofen by UV-LED/catalytic advanced oxidation process. J Water Process Eng [Internet]. 2019;31(October 2018):100808. Available from: https://doi.org/10.1016/j.jwpe.2019.100808

Thanekar P, Panda M, Gogate PR. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes. Ultrason Sonochem [Internet]. 2018;40(May 2017):567–76. Available from: https://doi.org/10.1016/j.ultsonch.2017.08.001

Gujar SK, Gogate PR, Kanthale P, Pandey R, Thakre S, Agrawal M. Combined oxidation processes based on ultrasound, hydrodynamic cavitation and chemical oxidants for treatment of real industrial wastewater from cellulosic fiber manufacturing sector. Sep Purif Technol [Internet]. 2021;257(October 2020):117888. Available from: https://doi.org/10.1016/j.seppur.2020.117888

Gągol M, Przyjazny A, Boczkaj G. Wastewater treatment by means of advanced oxidation processes based on cavitation – A review. Chem Eng J. 2018;338(January):599–627.

Wu P, Bai L, Lin W, Wang X. Mechanism and dynamics of hydrodynamic-acoustic cavitation (HAC). Ultrason Sonochem [Internet]. 2018;49(July):89–96. Available from: https://doi.org/10.1016/j.ultsonch.2018.07.021

Yi C, Lu Q, Wang Y, Wang Y, Yang B. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation. Ultrason Sonochem [Internet]. 2018;43(28):156–65. Available from: https://doi.org/10.1016/j.ultsonch.2018.01.013

Dular M, Griessler-Bulc T, Gutierrez-Aguirre I, Heath E, Kosjek T, Krivograd Klemenčič A, et al. Use of hydrodynamic cavitation in (waste)water treatment. Ultrason Sonochem. 2016;29:577–88.

Pozsgai E, Galambos I, Dóka G, Csóka L. Use of hydrodynamic cavitation with additional high purity water for thermal water treatment. Chem Eng Process - Process Intensif [Internet]. 2018;128(December 2017):77–9. Available from: https://doi.org/10.1016/j.cep.2018.04.016

Gogate PR, Pandit AB. A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrason Sonochem. 2005;12(1-2 SPEC. ISS.):21–7.

Gore MM, Saharan VK, Pinjari D V., Chavan P V., Pandit AB. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques. Ultrason Sonochem [Internet]. 2014;21(3):1075–82. Available from: http://dx.doi.org/10.1016/j.ultsonch.2013.11.015

Arrojo S, Benito Y, Martínez Tarifa A. A parametrical study of disinfection with hydrodynamic cavitation. Ultrason Sonochem. 2008;15(5):903–8.

Ozonek J. Application of hydrodynamic cavitation in environmental engineering. CRC Press; 2012. 122 p.

Badve M, Gogate P, Pandit A, Csoka L. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep Purif Technol [Internet]. 2013;106:15–21. Available from: http://dx.doi.org/10.1016/j.seppur.2012.12.029

Thanekar P, Murugesan P, Gogate PR. Improvement in biological oxidation process for the removal of dichlorvos from aqueous solutions using pretreatment based on Hydrodynamic Cavitation. J Water Process Eng [Internet]. 2018;23(March):20–6. Available from: https://doi.org/10.1016/j.jwpe.2018.03.004

Wang X, Jia J, Wang Y. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem Eng J [Internet]. 2017;315:274–82. Available from: http://dx.doi.org/10.1016/j.cej.2017.01.011

Huang Y, Wu Y, Huang W, Yang F, Ren XE. Degradation of chitosan by hydrodynamic cavitation. Polym Degrad Stab. 2013;98(1):37–43.

Malade L V., Deshannavar UB. Decolorisation of Reactive Red 120 by hydrodynamic cavitation. Mater Today Proc [Internet]. 2018;5(9):18400–9. Available from: https://doi.org/10.1016/j.matpr.2018.06.180

Prajapat AL, Gogate PR. Depolymerization of carboxymethyl cellulose using hydrodynamic cavitation combined with ultraviolet irradiation and potassium persulfate. Ultrason Sonochem [Internet]. 2019;51(August 2018):258–63. Available from: https://doi.org/10.1016/j.ultsonch.2018.10.009

Choi J, Cui M, Lee Y, Kim J, Son Y, Khim J. Hydrodynamic cavitation and activated persulfate oxidation for degradation of bisphenol A: Kinetics and mechanism. Chem Eng J [Internet]. 2018;338(January):323–32. Available from: https://doi.org/10.1016/j.cej.2018.01.018

Bagal M V., Gogate PR. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis. Ultrason Sonochem [Internet]. 2014;21(3):1035–43. Available from: http://dx.doi.org/10.1016/j.ultsonch.2013.10.020

Doltade SB, Dastane GG, Jadhav NL, Pandit AB, Pinjari D V., Somkuwar N, et al. Hydrodynamic cavitation as an imperative technology for the treatment of petroleum refinery effluent. J Water Process Eng [Internet]. 2019;29(January):100768. Available from: https://doi.org/10.1016/j.jwpe.2019.02.008

Barik AJ, Gogate PR. Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone. Ultrason Sonochem [Internet]. 2016;30:70–8. Available from: http://dx.doi.org/10.1016/j.ultsonch.2015.11.007

Panda D, Manickam S. Hydrodynamic cavitation assisted degradation of persistent endocrine-disrupting organochlorine pesticide Dicofol: Optimization of operating parameters and investigations on the mechanism of intensification. Ultrason Sonochem [Internet]. 2019;51(May 2018):526–32. Available from: https://doi.org/10.1016/j.ultsonch.2018.04.003

Capocelli M, Prisciandaro M, Lancia A, Musmarra D. Hydrodynamic cavitation of p-nitrophenol: A theoretical and experimental insight. Chem Eng J [Internet]. 2014;254:1–8. Available from: http://dx.doi.org/10.1016/j.cej.2014.05.102

Timothy Mason. Dietmar Peters. Practical sonochemistry. Power ultrasound uses and aplications. Philadelphia: Woodhead Publishing Limited; 2002. 155 p.

Ghafarzadeh M, Abedini R, Rajabi R. Optimization of ultrasonic waves application in municipal wastewater sludge treatment using response surface method. J Clean Prod [Internet]. 2017;150:361–70. Available from: http://dx.doi.org/10.1016/j.jclepro.2017.02.159

Luo X, Gong H, He Z, Zhang P, He L. Recent advances in applications of power ultrasound for petroleum industry. Ultrason Sonochem [Internet]. 2021;70(August 2020):105337. Available from: https://doi.org/10.1016/j.ultsonch.2020.105337

Bai L, Yan J, Zeng Z, Ma Y. Cavitation in thin liquid layer: A review. Ultrason Sonochem. 2020;66(March).

Mohanty P, Mahapatra R, Padhi P, Ramana CHVV, Mishra DK. Ultrasonic cavitation: An approach to synthesize uniformly dispersed metal matrix nanocomposites—A review. Nano-Structures and Nano-Objects [Internet]. 2020;23:100475. Available from: https://doi.org/10.1016/j.nanoso.2020.100475

Lippert T, Bandelin J, Schlederer F, Drewes JE, Koch K. Effects of ultrasonic reactor design on sewage sludge disintegration. Ultrason Sonochem [Internet]. 2020;68(June):105223. Available from: https://doi.org/10.1016/j.ultsonch.2020.105223

Rodríguez-Calvo A, Gonzalez-Lopez J, Ruiz LM, Gómez-Nieto MÁ, Muñoz-Palazon B. Effect of ultrasonic frequency on the bacterial community structure during biofouling formation in microfiltration membrane bioreactors for wastewater treatment. Int Biodeterior Biodegrad. 2020;155(April).

Jyoti KK, Pandit AB. Water disinfection by acoustic and hydrodynamic cavitation. Biochem Eng J. 2001;7(3):201–12.

Saxena S, Rajoriya S, Saharan VK, George S. An advanced pretreatment strategy involving hydrodynamic and acoustic cavitation along with alum coagulation for the mineralization and biodegradability enhancement of tannery waste effluent. Ultrason Sonochem [Internet]. 2018;44(February):299–309. Available from: https://doi.org/10.1016/j.ultsonch.2018.02.035

Korpe S, Bethi B, Sonawane SH, Jayakumar K V. Tannery wastewater treatment by cavitation combined with advanced oxidation process (AOP). Ultrason Sonochem [Internet]. 2019;59(March):104723. Available from: https://doi.org/10.1016/j.ultsonch.2019.104723

Gogate PR, Bhosale GS. Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters. Chem Eng Process Process Intensif [Internet]. 2013;71:59–69. Available from: http://dx.doi.org/10.1016/j.cep.2013.03.001

Chandak S, Ghosh PK, Gogate PR. Treatment of real pharmaceutical wastewater using different processes based on ultrasound in combination with oxidants. Process Saf Environ Prot [Internet]. 2020;137:149–57. Available from: https://doi.org/10.1016/j.psep.2020.02.025

Bagal M V., Gogate PR. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: A review. Ultrason Sonochem [Internet]. 2014;21(1):1–14. Available from: http://dx.doi.org/10.1016/j.ultsonch.2013.07.009

Hilares RT, Atoche-Garay DF, Pagaza DAP, Ahmed MA, Andrade GJC, Santos JC. Promising physicochemical technologies for poultry slaughterhouse wastewater treatment: A critical review. J Environ Chem Eng. 2021;9(2).

Ifelebuegu AO, Onubogu J, Joyce E, Mason T. Sonochemical degradation of endocrine disrupting chemicals 17β-estradiol and 17α-ethinylestradiol in water and wastewater. Int J Environ Sci Technol. 2014;11(1):1–8.

Zhang M, Zhang Z, Liu S, Peng Y, Chen J, Yoo Ki S. Ultrasound-assisted electrochemical treatment for phenolic wastewater. Ultrason Sonochem [Internet]. 2020;65(February):105058. Available from: https://doi.org/10.1016/j.ultsonch.2020.105058

Jaafarzadeh N, Takdastan A, Jorfi S, Ghanbari F, Ahmadi M, Barzegar G. The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater treatment. J Mol Liq. 2018;256:462–70.

Patil V V., Gogate PR, Bhat AP, Ghosh PK. Treatment of laundry wastewater containing residual surfactants using combined approaches based on ozone, catalyst and cavitation. Sep Purif Technol [Internet]. 2020;239(January):116594. Available from: https://doi.org/10.1016/j.seppur.2020.116594

Pulicharla R, Das RK, Kaur Brar S, Drogui P, Surampalli RY. Degradation kinetics of chlortetracycline in wastewater using ultrasonication assisted laccase. Chem Eng J [Internet]. 2018;347(April):828–35. Available from: https://doi.org/10.1016/j.cej.2018.04.162

Ayare SD, Gogate PR. Sonophotocatalytic oxidation based treatment of phthalocyanine pigment containing industrial wastewater intensified using oxidising agents. Sep Purif Technol [Internet]. 2020;233(July 2019):115979. Available from: https://doi.org/10.1016/j.seppur.2019.115979

Tan WK, Cheah SC, Parthasarathy S, Rajesh RP, Pang CH, Manickam S. Fish pond water treatment using ultrasonic cavitation and advanced oxidation processes. Chemosphere [Internet]. 2021;274:129702. Available from: https://doi.org/10.1016/j.chemosphere.2021.129702

Farhadi N, Tabatabaie T, Ramavandi B, Amiri F. Ibuprofen elimination from water and wastewater using sonication/ultraviolet/hydrogen peroxide/zeolite-titanate photocatalyst system. Environ Res [Internet]. 2021;198(April):111260. Available from: https://doi.org/10.1016/j.envres.2021.111260

Patil PB, Raut-Jadhav S, Pandit AB. Effect of intensifying additives on the degradation of thiamethoxam using ultrasound cavitation. Ultrason Sonochem [Internet]. 2021;70(August 2020):105310. Available from: https://doi.org/10.1016/j.ultsonch.2020.105310

Ren Q, Kong C, Chen Z, Zhou J, Li W, Li D, et al. Ultrasonic assisted electrochemical degradation of malachite green in wastewater. Microchem J [Internet]. 2021;164(November 2020):106059. Available from: https://doi.org/10.1016/j.microc.2021.106059

Alibardi L, Cossu R. Pre-treatment of tannery sludge for sustainable landfilling. Waste Manag [Internet]. 2016;52:202–11. Available from: http://dx.doi.org/10.1016/j.wasman.2016.04.008

Selvaraj H, Aravind P, George HS, Sundaram M. Removal of sulfide and recycling of recovered product from tannery lime wastewater using photoassisted-electrochemical oxidation process. J Ind Eng Chem [Internet]. 2020;83:164–72. Available from: https://doi.org/10.1016/j.jiec.2019.11.024

Saxena S, Saharan VK, George S. Enhanced synergistic degradation efficiency using hybrid hydrodynamic cavitation for treatment of tannery waste effluent. J Clean Prod [Internet]. 2018;198:1406–21. Available from: https://doi.org/10.1016/j.jclepro.2018.07.135

Haydar S, Aziz JA. Coagulation-flocculation studies of tannery wastewater using combination of alum with cationic and anionic polymers. J Hazard Mater. 2009;168(2–3):1035–40.

Aber S, Salari D, Parsa MR. Employing the Taguchi method to obtain the optimum conditions of coagulation-flocculation process in tannery wastewater treatment. Chem Eng J [Internet]. 2010;162(1):127–34. Available from: http://dx.doi.org/10.1016/j.cej.2010.05.012

Azizi M, Biard PF, Couvert A, Ben Amor M. Competitive kinetics study of sulfide oxidation by chlorine using sulfite as reference compound. Chem Eng Res Des. 2015;94(August):141–52.

El-Sheikh MA, Saleh HI, Flora JR, AbdEl-Ghany MR. Biological tannery wastewater treatment using two stage UASB reactors. Desalination [Internet]. 2011;276(1–3):253–9. Available from: http://dx.doi.org/10.1016/j.desal.2011.03.060

De Gisi S, Galasso M, De Feo G. Treatment of tannery wastewater through the combination of a conventional activated sludge process and reverse osmosis with a plane membrane. Desalination [Internet]. 2009;249(1):337–42. Available from: http://dx.doi.org/10.1016/j.desal.2009.03.014

Tammaro M, Salluzzo A, Perfetto R, Lancia A. A comparative evaluation of biological activated carbon and activated sludge processes for the treatment of tannery wastewater. J Environ Chem Eng [Internet]. 2014;2(3):1445–55. Available from: http://dx.doi.org/10.1016/j.jece.2014.07.004

Sundarapandiyan S, Chandrasekar R, Ramanaiah B, Krishnan S, Saravanan P. Electrochemical oxidation and reuse of tannery saline wastewater. J Hazard Mater [Internet]. 2010;180(1–3):197–203. Available from: http://dx.doi.org/10.1016/j.jhazmat.2010.04.013

Elabbas S, Ouazzani N, Mandi L, Berrekhis F, Perdicakis M, Pontvianne S, et al. Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode. J Hazard Mater [Internet]. 2016;319:69–77. Available from: http://dx.doi.org/10.1016/j.jhazmat.2015.12.067

Sivagami K, Sakthivel KP, Nambi IM. Advanced oxidation processes for the treatment of tannery wastewater. J Environ Chem Eng [Internet]. 2016;6(3):3656–63. Available from: https://doi.org/10.1016/j.jece.2017.06.004

Sauer TP, Casaril L, Oberziner ALB, José HJ, Moreira R de FPM. Advanced oxidation processes applied to tannery wastewater containing Direct Black 38-Elimination and degradation kinetics. J Hazard Mater. 2006;135(1–3):274–9.

Dotro G, Castro S, Tujchneider O, Piovano N, Paris M, Faggi A, et al. Performance of pilot-scale constructed wetlands for secondary treatment of chromium-bearing tannery wastewaters. J Hazard Mater [Internet]. 2012;239–240:142–51. Available from: http://dx.doi.org/10.1016/j.jhazmat.2012.08.050

Di Iaconi C, Ramadori R, Lopez A. The effect of ozone on tannery wastewater biological treatment at demonstrative scale. Bioresour Technol [Internet]. 2009;100(23):6121–4. Available from: http://dx.doi.org/10.1016/j.biortech.2009.06.022

Hashem MA, Nur-A-Tomal MS, Bushra SA. Oxidation-coagulation-filtration processes for the reduction of sulfide from the hair burning liming wastewater in tannery. J Clean Prod [Internet]. 2016;127:339–42. Available from: http://dx.doi.org/10.1016/j.jclepro.2016.03.159

Pérez JF, Llanos J, Sáez C, López C, Cañizares P, Rodrigo MA. The pressurized jet aerator: A new aeration system for high-performance H2O2electrolyzers. Electrochem commun [Internet]. 2018;89(February):19–22. Available from: https://doi.org/10.1016/j.elecom.2018.02.012

Kandasamy K, Tharmalingam K, Velusamy S. Treatment of tannery effluent using sono catalytic reactor. J Water Process Eng [Internet]. 2017;15:72–7. Available from: http://dx.doi.org/10.1016/j.jwpe.2016.09.001

Korpe S, Bethi B, Sonawane SH, Jayakumar K V. Tannery wastewater treatment by cavitation combined with advanced oxidation process (AOP). Ultrason Sonochem [Internet]. 2019;59(August):104723. Available from: https://doi.org/10.1016/j.ultsonch.2019.104723

Jeganathan S, Kandasamy K, Velusamy S, Sankaran P. Comparative studies on ultrasound assisted treatment of tannery effluent using multiple oxy-catalysts using response surface methodology. Arab J Chem [Internet]. 2020;13(9):7066–77. Available from: https://doi.org/10.1016/j.arabjc.2020.07.012

Saxena S, Saharan VK, George S. Enhanced synergistic degradation efficiency using hybrid hydrodynamic cavitation for treatment of tannery waste effluent. J Clean Prod [Internet]. 2018;198:1406–21. Available from: https://doi.org/10.1016/j.jclepro.2018.07.135

Gogate PR, Mujumdar S, Pandit AB. Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction. Adv Environ Res. 2003 Jan 1;7(2):283–99.

Mason TJ, Joyce E, Phull SS, Lorimer JP. Potential uses of ultrasound in the biological decontamination of water. Ultrason Sonochem. 2003 Oct 1;10(6):319–23.

Gilpavas E, Arbeláez-Castaño PE, Medina-Arroyave JD, Gómez-Atehortua CM, Gilpavas E, Arbeláez-Castaño PE, et al. TRATAMIENTO DE AGUAS RESIDUALES DE LA INDUSTRIA TEXTIL MEDIANTE COAGULACIÓN QUÍMICA ACOPLADA A PROCESOS FENTON INTENSIFICADOS CON ULTRASONIDO DE BAJA FRECUENCIA. Rev Int Contam Ambient [Internet]. 2018 [cited 2021 Oct 15];34(1):157–67. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992018000100157&lng=es&nrm=iso&tlng=es