Contenido principal del artículo

Autores

El copoazú (Theobroma grandiflorum) es un fruto amazónico con gran potencial económico, debido a su alto valor nutricional, siendo una fuente importante de ácido ascórbico y compuestos fénolicos. Su pulpa de alta viscosidad y acidez dificulta su procesamiento industrial. El presente estudio tiene como objetivo evaluar el efecto de la licuefacción enzimática con dos enzimas pectinolíticas comerciales (Rapidase Liq Plus y Rapidase Citrus Cloudy) a diferentes condiciones de temperatura (15 a 45 ºC) y tiempo de incubación (2 a 5 h) sobre las características fisicoquímicas del jugo y las propiedades tecnológicas del residuo de copoazú, bajo un diseño de superficie de respuesta. El mayor rendimiento (87.96 %) del jugo se obtuvo con la enzima Rapidase Liq Plus a 15 °C y durante 2 h de incubación. Mostrando el uso de enzimas hidrolíticas como una alternativa biotecnológica idónea para la adaptación fisicoquímica y reológica de la pulpa de copoazú, eliminando los problemas generados por el exceso de fibra y alta viscosidad. El residuo de copoazú tiene un alto contenido de fibra dietaría (42.48% en base húmeda). Además, presentó excelentes características como capacidad de hinchamiento (CH) (3.85 g de agua / g de materia seca) y capacidad de retención de agua (CRA) (3.94 g de agua/ g de materia seca). En consecuencia, el residuo de copoazú tiene aptitudes para ser utilizado como espesante e ingrediente funcional en productos alimentarios y farmacéuticos. 

Jenifer Criollo Nuñez, Corporación Colombiana de Investigación Agropecuaria Agrosavia

https://orcid.org/0000-0002-1623-4966

Martha DP. Lopez-Hernandez, Corporación Colombiana de Investigación Agropecuaria Agrosavia

https://orcid.org/0000-0002-4214-0306

Angelica P. Sandoval-Aldana, Universidad del Tolima

https://orcid.org/0000-0002-0850-6394

Dagoberto Criollo-Cruz, Corporación Colombiana de Investigación Agropecuaria Agrosavia

https://orcid.org/0000-0002-5360-6204

1.
Criollo Nuñez J, Fonseca-Blanco JD, Lopez-Hernandez MD, Sandoval-Aldana AP, Criollo-Cruz D. Un estudio comparativo de dos enzimas pectinolíticas en la licuefacción de la pulpa de copoazú (Theobroma grandiflorum) y extracción de fibra dietaría. inycomp [Internet]. 26 de mayo de 2022 [citado 19 de abril de 2024];24(02):1-13. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11586

(1) Salgado JM, Rodrigues BS, Donado-Pestana CM, dos Santos Dias CT, Morzelle MC. Cupuassu (Theobroma grandiflorum) peel as potential source of dietary fiber and phytochemicals in whole-bread preparations. Plant Foods Hum Nutr. 2011 nov;66(4):384–390. https://doi.org/10.1007/s11130-011-0254-0

(2) Ramos S, Salazar M, Nascimento L, Carazzolle M, Pereira G, Delforno T, et al. Influence of pulp on the microbial diversity during cupuassu fermentation. International Journal of Food Microbiology. 2020;318:108465.

https://doi.org/10.1016/j.ijfoodmicro.2019.108465

(3) Díaz RO, Hernández MS. Theobromas from the Colombian Amazon: A healthy alternative. Inf Tecnol. 2020 apr;31(2):3–10.

http://dx.doi.org/10.4067/S0718-07642020000200003

(4) Curimbaba TFS, Almeida-Junior LD, Chagas AS, Quaglio AEV, Herculano AM, Di Stasi LC. Prebiotic, antioxidant and anti-inflammatory properties of edible Amazon fruits. Food Biosci. 2020;36:100599.

https://doi.org/10.1016/j.fbio.2020.100599

(5) Costa RS da, Santos OV Dos, Lannes SC da S, Casazza AA, Aliakbarian B, Perego P, et al. Bioactive compounds and value-added applications of cupuassu (Theobroma grandiflorum schum.) agroindustrial by-product. Food Sci Technol. 2020;40(2):401–407.

https://doi.org/10.1590/fst.01119

(6) Pugliese AG, Tomas-Barberan FA, Truchado P, Genovese MI. Flavonoids, proanthocyanidins, vitamin C, and antioxidant activity of theobroma grandiflorum (Cupuassu) pulp and seeds. J Agric Food Chem. 2013;61(11):2720–2728.

https://doi.org/10.1021/jf304349u

(7) Da Silva LMR, De Figueiredo EAT, Ricardo NMPS, Vieira IGP, De Figueiredo RW, Brasil IM, et al. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014;143:398–404.

http://dx.doi.org/10.1016/j.foodchem.2013.08.001

(8) Vriesmann LC, de Oliveira Petkowicz CL. Polysaccharides from the pulp of cupuassu (Theobroma grandiflorum): Structural characterization of a pectic fraction. Carbohydr Polym. 2009 may;77(1):72–79.

http://dx.doi.org/10.1016/j.carbpol.2008.12.007

(9) Sharma HP, Patel H, Sharma S. Enzymatic extraction and clarification of juice from various Fruits. Trends Post Harvest Technol. 2014;2(1):1–14.

(10) Sobini N, Wickramasinghe I, Subajini M. Process optimization of pectinase enzyme in Palmyrah fruit pulp for clarification. Int J Food Sci Nutr Int. 2018 sep;3(5):178–181.

(11) Macagnan FT, Santos LR Dos, Roberto BS, De Moura FA, Bizzani M, Da Silva LP. Biological properties of apple pomace, orange bagasse and passion fruit peel as alternative sources of dietary fibre. Bioact Carbohydrates Diet Fibre. 2015 jul;6(1):1–6. http://dx.doi.org/10.1016/j.bcdf.2015.04.001

(12) Dhingra D, Michael M, Rajput H, Patil RT. Dietary fibre in foods: A review. J Food Sci Technol. 2012 jun;49(3):255–266.

https://doi.org/10.1007/s13197-011-0365-5

(13) Kaczmarczyk MM, Miller MJ, Freund GG. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism. 2012 aug;61(8):1058–1066.

http://dx.doi.org/10.1016/j.metabol.2012.01.017

(14) Hussain S, Jõudu I, Bhat R. Dietary fiber from underutilized plant resources-A positive approach for valorization of fruit and vegetable wastes. Sustainability. 2020;12(13):5401.

https://doi.org/10.3390/su12135401

(15) Martínez R, Torres P, Meneses MA, Figueroa JG, Pérez-Álvarez JA, Viuda-Martos M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012 dec;135(3):1520–1526. http://dx.doi.org/10.1016/j.foodchem.2012.05.057

(16) Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr Rev Food Sci Food Saf. 2018;17(3):512–531.

https://doi.org/10.1111/1541-4337.12330

(17) Tapre AK, Jain RK. Optimization of an enzyme assisted banana pulp clarification process. Int Food Res J. 2014;21(5):2043–2048.

(18) Sakhale BK, Pawar VN, Gaikwad SS. Studies on effect of enzymatic liquefaction on quality characteristics of Kesar mango pulp. Int Food Res J. 2016;23(2):860–865.

(19) Mohammadi M, Rezaei Mokarram R, Shahvalizadeh R, Sarabandi K, Lim LT, Hamishehkar H. Immobilization and stabilization of pectinase on an activated montmorillonite support and its application in pineapple juice clarification. Food Biosci. 2020 aug;36:100625. https://doi.org/10.1016/j.fbio.2020.100625

(20) Teixeira MFS, Andrade JS, Fernandes OCC, Durán N, Lima Filho JL De. Quality attributes of cupuaçu juice in response to treatment with crude enzyme extract produced by Aspergillus japonicus 586. Enzyme Res. 2011;2011:494813.

https://doi.org/10.4061/2011/494813

(21) Criollo J, Criollo D, Sandoval Aldana A. Fermentación de la almendra de copoazú (Theobroma grandiflorum [Willd. ex Spreng.] Schum.): evaluación y optimización del proceso. Corpoica Cienc y Tecnol Agropecu. 2010;11(2):107–115.

(22) A.O.A.C. Official methods of analysis of the AOAC International. 18a edición. Gaithersburg: Estados Unidos; 2005.

(23) Chauhan SK, Tyagi SM, Singh D. Pectinolytic liquefaction of apricot, plum, and mango pulps for juice extraction. Int J Food Prop. 2001;4(1):103–109.

https://doi.org/10.1081/JFP-100002190

(24) Valencia G F, Román M M. Caracterización fisicoquímica y funcional de tres concentrados comerciales de fibra dietaria. Vitae. 2006;13(2):54–60.

(25) Sharma HP, Patel H, Sugandha. Enzymatic added extraction and clarification of fruit juices–A review. Crit Rev Food Sci Nutr. 2016;57(6):1215–1227.

https://doi.org/10.1080/10408398.2014.977434

(26) Saxena D, Sabikhi L, Chakraborty SK, Singh D. Process optimization for enzyme aided clarification of watermelon juice. J Food Sci Technol. 2014 oct;51(10):2490–2498.

https://doi.org/10.1007/s13197-012-0720-1

(27) Singh NI, Dhuique-Mayer C, Lozano Y. Physico-chemical changes during enzymatic liquefaction of mango pulp (cv. Keitt). J Food Process Preserv. 2000;24(1):73–85.

https://doi.org/10.1111/j.1745-4549.2000.tb00406.x

(28) Yusof S, Ibrahim N. Quality of soursop juice after pectinase enzyme treatment. Food Chem. 1994;51(1):83–88.

https://doi.org/10.1016/0308-8146(94)90052-3

(29) Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011 jan;124(2):411–421. http://dx.doi.org/10.1016/j.foodchem.2010.06.077

(30) Esposito F, Arlotti G, Bonifati AM, Napolitano A, Vitale D, Fogliano V. Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res Int. 2005 dec;38(10):1167–1173.

https://doi.org/10.1016/j.foodres.2005.05.002

(31) Grigelmo-Miguel N, Martín-Belloso O. Characterization of dietary fiber from orange juice extraction. Food Res Int. 1998 jun;31(5):355–361.

https://doi.org/10.1016/S0963-9969(98)00087-8

Recibido 2021-09-07
Aceptado 2021-11-09
Publicado 2022-05-26