Removal of dyes brilliant blue and methyl violet from aqueous solution using cassava peel (Manihot esculenta) modified with phosphoric acid
Main Article Content
In this paper, the ability of cassava peel modified with phosphoric acid to remove Methyl Violet and Brilliant Blue FCF from aqueous solutions was evaluated. The best temperature conditions (127 °C) and biomass/acid ratio (1:1) were determined for the modification of cassava peel, using the Methylene Blue Index method. Then, the adsorption capacity of the cassava peel selected in the removal of the Brilliant Blue and Methyl Violet dyes was evaluated, finding values of percentage of removal and maximum adsorption capacity of 16.1% and 0.00207 mmol / g for Brilliant Blue, and 97.95% and 0.0249 mmol / g for Methyl Violet, achieving equilibrium in 285 and 330 minutes, respectively. The data of the adsorption kinetics of each of the dyes were adjusted to the pseudo first order and pseudo second order models: the adsorption of Violet of Methyl was better represented by the pseudo-second order model, whereas the adsorption data of Bright Blue was better fitted to the pseudo-first order model. To study the adsorption equilibrium, the data were adjusted to the Langmuir, Freundlich, and Tekim models, showing that the Freundlich model has the best fitting to the experimental values. nf values indicate the favorability in the adsorption processes for each dye. Finally, in the thermodynamic analysis it was determined that the adsorption of both dyes occurs spontaneously and is also favored with the increase in temperature, proving to be an endothermic process.
(1) Ríos N. Eliminación de colorantes de soluciones acuosas utilizando sulfato de quitosano. Rev Iberoamericana Polím. 2013;14(5):256–63.
(2) Hynes NRJ, Kumar JS, Kamyab H, Sujana JAJ, Al-Khashman OA, Kuslu Y, et al. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. J Cleaner Prod. 2020 Nov 1;272:122636. DOI: https://doi.org/10.1016/j.jclepro.2020.12 2636
(3) Tkaczyk A, Mitrowska K, Posyniak A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci Total Environ. 2020 May 15;717:137222. DOI: https://doi.org/10.1016/j.scitotenv.2020. 137222
(4) Riaño N. Degradación del cristal violeta presente en aguas residuales mediante la oxidación catalítica húmeda con peróxido de hidrógeno a partir de óxidos me MnCu a condiciones moderadas [Trabajo de grado en Internet]. Bogotá: Universidad de América; 2018. Disponible en: http://52.0.229.99/handle/20.500.11839/ 6963
(5) Torres A, Vanegas G. Evaluación de la capacidad de adsorción de la corteza de naranja, bagazo de caña de azúcar y borra de café para la remoción del colorante azul brillante FCF [Trabajo de grado en Internet]. Bogotá: Universidad Distrital Francisco José de Caldas; 2018. Disponible en: https://repository.udistrital.edu.co/handle /11349/14019
(6) Fernadez J, Henao L, Pedroza A, Quevedo B. Inmovilización de hongos ligninolíticos para la remoción del colorante reactivo 5. Rev Col Biotecnol. 2009;11(1):59–72.
(7) Aranda M, Valladare M. Remoción de colorantes en agua aplicando materiales de origen natural como adsorbentes. Rev Latinoamer Ambiente Cien. 2018;9(21):563–75.
(8) Georgin J, de O. Salomón YL, Franco DSP, Netto MS, Piccilli DGA, Foletto EL, et al. Successful adsorption of bright blue and methylene blue on modified pods of Caesalpinia echinata in discontinuous system. Environ Sci Poll Res. 2021 Feb 15;28(7). DOI: https://doi.org/10.1007/s11356-020- 11210-3
(9) Astuti W, Chafidz A, Wahyuni E, Prasetya A, Bendiyasa M, Abasaeed A. Methyl violet dye removal using coal fly ash (CFA) as a dual sites adsorbent. J Environ Chem Eng. 2019;7(5):103262. DOI: https://doi.org/10.1016/j.jece.2019.1032 62
(10) Lavado C, Sun R, Castro T. Biosorción del colorante azul de metileno usando los cladodios de la tuna (Opuntia ficus indica). Rev Soc Quím Perú. 2020;86(3):231–45. DOI: http://dx.doi.org/10.37761/rsqp.v86i3.29 7
(11) Albis Arrieta AR, López Rangel AJ, Romero Castilla MC. Removal of methylene blue from aqueous solutions using cassava peel (Manihot esculenta) modified with phosphoric acid. Prospectiva. 2017 Jul 6;15(2):60–73. DOI: https://doi.org/10.15665/rp.v15i2.777
(12) Albis A, Martínez J, Severiche M, Garcia J. Remoción de plomo de soluciones acuosas usando cáscara de yuca modificada con ácido cítrico. Avances Inv Ing. 2016 Dec 1;13(2):1–11. DOI: https://doi.org/10.18041/1794- 4953/avances.2.254
(13) Fonseca J, Albis A, Montenegro AR. Evaluation of zinc adsorption using cassava peels (Manihot esculenta) modified with citric acid. Contemp Eng Sci. 2018;11(72). DOI: https://doi.org/10.12988/ces.2018.87364
(14) Albis Arrieta A, Llanos Reales H, Galeano Gil J, García Moreno D. Adsorción de azul de metileno utilizando cáscara de yuca (Manihot esculenta) modificada químicamente con ácido oxálico. Rev ION. 2019 Jan 30;31(2):99– 110.
(15) Albis Arrieta AR, Martínez J, Santiago P. Removal of zinc (II) from aqueous solutions using cassava peel (Manihot esculenta): column experiments. Prospectiva. 2017 Feb 22;15(1):16–28. DOI: https://doi.org/10.15665/rp.v15i1.773
(16) Albis A, Arzuza S, Mosquera A. Remoción de Mercurio (II) en solución acuosa usando residuo industrial de yuca (Manihot esculenta). Prospectiva. 2019;17(2):33–9. DOI: https://doi.org/10.15665/rp.v17i2.1951
(17) Vesga J, Romero E. Remoción de colorantes azul brillante y violeta de metilo de soluciones acuosas utilizando cáscara de yuca (Manihot esculenta) modificada con ácido fosfórico [Trabajo de grado]. Puerto Colombia: Universidad del Atlántico; 2020.
(18) Reyes E, Robles A. Bioadsorción de azul directo 86 en solución acuosa por biomasa inmovilizada de Chlorella sp. y cáscara de naranja (Citrus sinensis) pretratada [Trabajo de grado]. Barranquilla: Universidad del Atlántico; 2016.
(19) Amaringo F. Determinación del punto de carga cero y el punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes. Rev Inv Agraria Ambiental. 2013;4(2):27–36.
(20) Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Design. 2016 May;109:495–504. DOI: https://doi.org/10.1016/j.cherd.2016.02.0 06
(21) Hall K, Eagleton L, Acrivos A, Vermeulen T. Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Ind Eng Chem Fundamen. 1966;5(2):212–23.
(22) Freundlich HM. Acerca de la adsorción en solución. Z Phys Chem. 1906;57:385– 471.
(23) McKay G. Use of Adsorbents for the Removal of Pollutants from Wastewater. Hong Kong: CRC Press; 1995. 100 p.
(24) Penedo M, Michel E, Vendrell F, Salas D. Adsorción de níquel y cobalto sobre carbón activado de cáscara de coco. Tecnol Quím. 2015;35(1):110–24.
(25) Castellar G, Mendoza E, Angulo E. Equilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca. Rev MVZ Córdoba. 2019;24(2):7231–8. DOI: https://doi.org/10.21897/rmvz.1700
(26) Subbaiah M v, Kim D -s. Adsorption of methyl orange form aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic. Ecotoxicol Envirom Safety. 2016;128:109–17. DOI: https://doi.org/10.1016/j.ecoenv.2016.02 .016
(27) Thitame P, Shukla SR. Adsorptive removal of reactive dyes form aquous solution using activated carbon synthesized from waste biomass materials. Int J Environ Sci Technol. 2016;13(2):561–70. DOI: 10.1007/s13762-015-0901-3
(28) Aryal M, Liakopoulou-Kyriakides M. Equilibrium, kinetics and thermodynamic studies on phosphate biosorption from aqueous solutionsby Fe(III)-treated Staphylococus xylosus biomass: Common ion effect. Coll Surf A: Physicochem Eng Aspects. 2011 Aug;387(1–3):43–9. DOI: https://doi.org/10.1016/j.colsurfa.2011.0 7.019
(29) Liu Y. Is the free energy change of adsorption correctly calculated. J Chem Eng. 2009;54(7):1981–5. DOI: https://doi.org/10.1021/je800661q
(30) Anastopoulos L, Kyzas GZ. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J Mol Liq. 2016;218:174– 85. DOI: https://doi.org/10.1016/j.molliq.2016.02. 059
(31) Scheufele FB, Módenes AN, Borba CE, Ribeiro C, Espinoza-Quiñones FR, Bergamasco R, et al. Monolayer– multilayer adsorption phenomenological model: Kinetics, equilibrium and thermodynamics. Chem Eng J. 2016 Jan;284:1328–41. DOI: https://doi.org/10.1016/j.cej.2015.09.085
(32) Socrates G. Infrared and Raman Characteristic group frequencies: Tables and Charts. New York: John Wiley and Sons; 2004. 235 p.
(33) Daasch L, Smith C. Infrared spectra of phosphorus compounds. Anal Chem. 1951;23(6):853–68.
(34) Guo Y, Rockstraw DA. Activated carbons prepared form rice hull by onestep phosphoric acid activation. Microporous Mesoporous Mat. 2007;100(1–3):13–9. DOI: https://doi.org/10.1016/j.micromeso.200 6.10.006
(35) Aljeboree AM, Alkaim AF, Al-Dujaili AH. Adsorption isotherm, kinetic modeling and thermodynamics of crystal violet dye on coconut husk-based activated carbon. Desalination Water Treat. 2015 Mar 27;53(13):3656–67. DOI: https://doi.org/10.1080/19443994.2013.8 77854
(36) Hincapié Mejía G, Cardona Cuervo S, Ríos LA. Absorption thermodynamic study of azoic dye with by means of a lignocellulosic waste in aqueous medium. Ing Desarrollo. 2018 Jan 1;36(1):97–118. DOI: https://doi.org/10.14482/inde.36.1.10941
Accepted 2021-10-28
Published 2022-05-26
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).