Main Article Content

Authors

This paper presents a comparison of some simulation tools for photovoltaic systems. The analysis was made considering four criteria: historical citations, accessibility, user friendliness and simulation. Each criterion includes aspects which have a score assignation. Finally, a weighing was made to define the computational tool with more advantages and potential to be used in the Colombian context. The simulation software with more advantages for photovoltaic system simulation are PVSyst and PV*SOL. Both its interface and the information given in the simulation, made them very complete tools for the analysis of the energy production in this kind of systems. Simulation software are needed for the analysis of the operation of photovoltaic systems. Among the most used are: PVSyst, PV*SOL, SAM and RETScreen. The evaluation of these tools allowed to identify that PV*SOL is the software with more advantages and strengths.

Luis A. Foronda-Gutiérrez, Instituto Tecnológico Metropolitano, Facultad de Ingenierías, Medellín, Colombia

https://orcid.org/0000-0001-7679-102X

Luz Adriana Trejos Grisales, Instituto Tecnológico Metropolitano, Facultad de Ingenierías, Medellín, Colombia

https://orcid.org/0000-0001-8843-0918

Daniel Gonzalez-Montoya, Instituto Tecnológico Metropolitano, Facultad de Ingenierías, Medellín, Colombia

https://orcid.org/0000-0002-8658-614X

1.
Foronda-Gutiérrez LA, Trejos Grisales LA, Gonzalez-Montoya D. Assessment of computing tools for photovoltaic system analysis. inycomp [Internet]. 2022 May 26 [cited 2024 Dec. 30];24(02). Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11516

(1). J. E. Garzón Quintero, «Factores De Riesgos Ergonómicos Presentes En Los Trabajadores De Lineas Y Redes De La Empresa Electrificadora Del Huila S.A,» Neiva, 2009.

(2). V. Padmanathan, L. Joseph, B. Omar y R. Nawawi, «Prevalence of musculoskeletal disorders and related occupational causative factors among electricity linemen: A narrative review,» International Journal of Occupational Medicine and Environmental Health, vol. 29, nº 5, pp. 725-734, October 2016.

(3). A. DANE, «Minsalud,» 12 febrero 2020. [En línea]. Available: https://www.minsalud.gov.co/proteccionsocia l/RiesgosLaborales/Paginas/afiliacionsistema-general-riesgos-laborales.aspx. [Último acceso: 24 2 2021].

(4). S. Alabdulkarim y M. A. Nussbaum, «Influences of different exoskeleton designs and tool mass on physical demands and performance in a simulated overheaddrilling task,» Applied Ergonomics, vol. 74, pp. 55-66, August 2018.

(5). M. Abdelmomen, F. Ozan Dengiz, H. Samir y M. Tamre, «RESEARCH ON UPPER-BODY EXOSKELETONS FOR PERFORMANCE AUGMENTATION OF PRODUCTION WORKERS,» de 30TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION. , Tallin, Estonia, 2019.

(6). T. Butler y J. C. Gillette, «Exoskeleton Used as PPE for Injury Prevention,» PROFESSIONAL SAFETY PSJ, pp. 33-37, March 2019.

(7). M. P. de Looze, T. Bosch, F. Krause, K. S. Stadler y L. W. O´sullivan, «Exoskeletons for industrial application andtheir potential effects on physical work load,» Ergonomics, vol. 59, nº 5, pp. 671-681, May 2015.

(8). T. Bosch, J. van Eck, K. Knitel y M. de Looze, «The effects of a passive exoskeleton on muscle activity, discomfort and endurancetime in forward bending work,» Applied Ergonomics, vol. 54, pp. 212-217, January 2016

(9). T. B. F. K. K. S. S. &. L. W. O. Michiel P. de Looze, «Exoskeletons for industrial application and their potential effects on physical work load,» Ergonomics, pp. 671- 681, 2016.

(10). I. Pacifico, A. Scano, E. Guanziroli, M. Moise, L. Morelli, A. Chiavenna, D. Romo, S. Spada, G. Colombina, F. Molteni, F. Giovacchini, N. Vitiello y S. Crea, «An Experimental Evaluation of the Proto-MATE : A Novel Ergonomic Upper-Limb Exoskeleton to Reduce Workers' Physical Strain,» IEEE ROBOTICS & AUTOMATION MAGAZINE, vol. 27, nº 1, pp. 54-65, 2020.

(11). T. Schmalz, J. Schandlinger, M. Schuler, J. Bornmann, B. Schirrmeister, A. Kannenberg y M. Ernst, «Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work,» International Journal of Environmental Research and Public Health, vol. 16, nº 23, November 2019.

(12). L. H. Barrero, J. A. Pulido, S. Berrio, M. Monrroy, L. A. Quintana y C. Ceballos, «Physical workloads of the upper extremity among workers of the Colombian flower industry,» American Journal of Industrial Medicine, vol. 55, nº 10, pp. 926-936, July 2012.

(13). L. H. Barrero, C. Ceballos, R. Ellegast, J. A. Pulido, M. Monroy, S. Berrio y L. A. Quintana, «A randomized intervention trial to reduce mechanical exposures in the Colombian flower industry.,» Work, vol. 41, nº 1, pp. 4971-4974, 1 January 2012.

(14). S. Peláez y L. A. Quintana, «Assessment of Muscular Activity and Postural Load During Coffee Harvesting Activities – A Case Study,» Ingeniería y Universidad, vol. 24, nº 1, Febrary 2020.

(15). S. Berrio, L. H. Barrero y L. A. Quintana, «A field experimento comparing mechanical demandsof two pruners for flower cutting,» Work, vol. 41, nº 1, pp. 1342-1345, 2012.

(16). A. Blanco, J. M. Catalán, J. A. Díez, J. V. García, E. Lobato y N. GarcíaAracil, «Electromyography Assessment of the Assistance Provided by an UpperLimb Exoskeleton in Maintenance Tasks,» Sensor, vol. 19, nº 15, 2 agosto 2019.

(17). A. O. Perotto, Anatomical Guide for the Electromyographer: The Limbs and Trunk., 5th ed., T. Books, Ed., Springfield: Charles C Thomas, 2011.

(18). H. Hermens, B. Freriks, C. Disselhorst y G. Rau, «Development of recommendations for SEMG sensors and sensor placement procedures,» Journal of Electromyography and Kinesiology, vol. 10, nº 5, October 2000.

(19). B. Jonsson, «The static load component in muscle work.,» European Journal of Applied Physiology and Occupational Physiology, pp. 57(3), pp.305-310.,, 1988.

Received 2021-08-08
Accepted 2021-11-09
Published 2022-05-26