Main Article Content

Authors

The muscle evaluation of this case study was applied to a group of workers from the Colombian company, Enel-Codensa. To achieve this, eight muscles were evaluated in which electromyography (EMG) was used in 20 volunteer participants, consisting of 12 electrical technicians and eight volunteers. The aim of the study was to determine whether a decrease in muscular effort occurred when the workers used the exoskeleton, to compare experienced and inexperienced subjects, and ultimately to analyze whether muscular activity varied with the use of an exoskeleton. As a result, muscular effort was lower in all the muscles when using the exoskeleton. However, the activity remained above 10% of muscular effort on average, which can generate muscular fatigue such activity is maintained during an 8-hour day. The analysis showed that there is no difference when performing the activity with or without an exoskeleton except for the flexor carpi radialis muscle. Alternatively, when comparing the two groups, experts, and novices, it was found that the muscular activity of the experts was greater by 1%. As the study was performed, it was found that among this group, there was an equality of measurements in six of the eight muscles. In conclusion, the scaffold erection test demonstrated muscular effort in the forearm and arm for both samples. To reduce this muscular effort, it is recommended to provide tools or redesign the task.

Sebastián Peláez Gómez, Institución Universitaria Politécnico Grancolombiano, Escuela de Optimización, infraestructura y automatización, Bogotá, Colombia

https://orcid.org/0000-0002-3399-9135

Oscar D. Martínez Bernal, Pontificia Universidad Javeriana, Departamento de Ingeniería Electrónica, Bogotá, Colombia

https://orcid.org/0000-0002-5336-4583

Rodrigo Muñoz, Pontificia Universidad Javeriana, Departamento de Ingeniería Sistemas, Bogotá, Colombia

https://orcid.org/0000-0002-0522-4834

Christian R. Zea, Pontificia Universidad Javeriana, Departamento de Ingeniería Industrial, Bogotá, Colombia.

https://orcid.org/0000-0003-0987-6212

1.
Peláez Gómez S, Martínez Bernal OD, Muñoz R, Mondragón IF, Zea CR. A comparative muscular assessment of the exoskeleton in a scaffold building operation, case study. inycomp [Internet]. 2022 May 26 [cited 2024 Nov. 18];24(02):13. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11393

(1). J. E. Garzón Quintero, «Factores De Riesgos Ergonómicos Presentes En Los Trabajadores De Lineas Y Redes De La Empresa Electrificadora Del Huila S.A,» Neiva, 2009.

(2). V. Padmanathan, L. Joseph, B. Omar y R. Nawawi, «Prevalence of musculoskeletal disorders and related occupational causative factors among electricity linemen: A narrative review,» International Journal of Occupational Medicine and Environmental Health, vol. 29, nº 5, pp. 725-734, October 2016.

(3). A. DANE, «Minsalud,» 12 febrero 2020. [En línea]. Available: https://www.minsalud.gov.co/proteccionsocial/RiesgosLaborales/Paginas/afiliacion-sistema-general-riesgos-laborales.aspx. [Último acceso: 24 2 2021].

(4). S. Alabdulkarim y M. A. Nussbaum, «Influences of different exoskeleton designs and tool mass on physical demands and performance in a simulated overheaddrilling task,» Applied Ergonomics, vol. 74, pp. 55-66, August 2018.

(5). M. Abdelmomen, F. Ozan Dengiz, H. Samir y M. Tamre, «RESEARCH ON UPPER-BODY EXOSKELETONS FOR PERFORMANCE AUGMENTATION OF PRODUCTION WORKERS,» de 30TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION. , Tallin, Estonia, 2019.

(6). T. Butler y J. C. Gillette, «Exoskeleton Used as PPE for Injury Prevention,» PROFESSIONAL SAFETY PSJ, pp. 33-37, March 2019.

(7). M. P. de Looze, T. Bosch, F. Krause, K. S. Stadler y L. W. O´sullivan, «Exoskeletons for industrial application andtheir potential effects on physical work load,» Ergonomics, vol. 59, nº 5, pp. 671-681, May 2015.

(8). T. Bosch, J. van Eck, K. Knitel y M. de Looze, «The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work,» Applied Ergonomics, vol. 54, pp. 212-217, January 2016

(9). T. B. F. K. K. S. S. &. L. W. O. Michiel P. de Looze, «Exoskeletons for industrial application and their potential effects on physical work load,» Ergonomics, pp. 671-681, 2016.

(10). I. Pacifico, A. Scano, E. Guanziroli, M. Moise, L. Morelli, A. Chiavenna, D. Romo, S. Spada, G. Colombina, F. Molteni, F. Giovacchini, N. Vitiello y S. Crea, «An Experimental Evaluation of the Proto-MATE : A Novel Ergonomic Upper-Limb Exoskeleton to Reduce Workers' Physical Strain,» IEEE ROBOTICS & AUTOMATION MAGAZINE, vol. 27, nº 1, pp. 54-65, 2020.

(11). T. Schmalz, J. Schandlinger, M. Schuler, J. Bornmann, B. Schirrmeister, A. Kannenberg y M. Ernst, «Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work,» International Journal of Environmental Research and Public Health, vol. 16, nº 23, November 2019.

(12). L. H. Barrero, J. A. Pulido, S. Berrio, M. Monrroy, L. A. Quintana y C. Ceballos, «Physical workloads of the upper extremity among workers of the Colombian flower industry,» American Journal of Industrial Medicine, vol. 55, nº 10, pp. 926-936, July 2012.

(13). L. H. Barrero, C. Ceballos, R. Ellegast, J. A. Pulido, M. Monroy, S. Berrio y L. A. Quintana, «A randomized intervention trial to reduce mechanical exposures in the Colombian flower industry.,» Work, vol. 41, nº 1, pp. 4971-4974, 1 January 2012.

(14). S. Peláez y L. A. Quintana, «Assessment of Muscular Activity and Postural Load During Coffee Harvesting Activities – A Case Study,» Ingeniería y Universidad, vol. 24, nº 1, Febrary 2020.

(15). S. Berrio, L. H. Barrero y L. A. Quintana, «A field experimento

comparing mechanical demandsof two pruners for flower cutting,» Work, vol. 41, nº 1, pp. 1342-1345, 2012.

(16). A. Blanco, J. M. Catalán, J. A. Díez, J. V. García, E. Lobato y N. García-Aracil, «Electromyography Assessment of the Assistance Provided by an Upper-Limb Exoskeleton in Maintenance Tasks,» Sensor, vol. 19, nº 15, 2 agosto 2019.

(17). A. O. Perotto, Anatomical Guide for the Electromyographer: The Limbs and Trunk., 5th ed., T. Books, Ed., Springfield: Charles C Thomas, 2011.

(18). H. Hermens, B. Freriks, C. Disselhorst y G. Rau, «Development of recommendations for SEMG sensors and sensor placement procedures,» Journal of Electromyography and Kinesiology, vol. 10, nº 5, October 2000.

(19). B. Jonsson, «The static load component in muscle work.,» European Journal of Applied Physiology and Occupational Physiology, pp. 57(3), pp.305-310.,, 1988.